1
|
Wu H, Chen J, Liu Y, Cheng H, Nan J, Park HJ, Yang L, Li J. Digestion profile, antioxidant, and antidiabetic capacity of Morchella esculenta exopolysaccharide: in vitro, in vivo and microbiota analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4401-4412. [PMID: 36807912 DOI: 10.1002/jsfa.12513] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 12/11/2022] [Accepted: 02/19/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Novel functional polysaccharides from fungi are important nutraceuticals. An exopolysaccharide, Morchella esculenta exopolysaccharide (MEP 2), was extracted and purified from the fermentation liquor of M. esculenta. The aim of this study was to investigate its digestion profile, antioxidant capacity, and effect on the microbiota composition in diabetic mice. RESULTS The study found that MEP 2 was stable during in vitro saliva digestion but was partially degraded during gastric digestion. The digest enzymes exerted a negligible effect on the chemical structure of MEP 2. Molecular weight and atomic force microscope (AFM) images suggest that both smaller chains and larger aggregations were produced. Scanning electron microscope (SEM) images reveal that the surface morphology was much altered after intestinal digestion. After digestion, the antioxidant ability increased as revealed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. Both MEP 2 and its digested components showed strong α-amylase and moderate α-glucosidase inhibition activity, leading us to further investigate its ability to modulate the diabetic symptoms. The MEP 2 treatment ameliorated the inflammatory cell infiltration and increased the size of pancreas inlets. Serum concentration of HbA1c was significantly reduced. Blood glucose level during the oral glucose tolerance test (OGTT) was also slightly lower. The MEP 2 increased the diversity of the gut microbiota and modulated the abundance of several important bacteria including Alcaligenaceae, Caulobacteraceae, Prevotella, Brevundimonas, Demequina, and several Lachnospiraceae species. CONCLUSION It was found that MEP 2 was partially degraded during in vitro digestion. Its potential antidiabetic bioactivity may be associated with its α-amylase inhibition and gut microbiome modulation ability. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haishan Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Jing Chen
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
- Department of Oral Mucosa, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuting Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Haoran Cheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Jian Nan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Hyun Jin Park
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Liu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| | - Jinglei Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, P.R. China
| |
Collapse
|
2
|
Pan L, Wang L, Zhang F, Zhang Y, Zheng B. Structural characterization and bifidogenic activity of polysaccharide from Dictyophora indusiata. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Chen L, Chen J, Li J, Xie J, Yu M, Zhou M, Xi M, Sun S. Physicochemical properties and in vitro digestion behavior of a new bioactive Tremella fuciformis gum. Int J Biol Macromol 2022; 207:611-621. [PMID: 35247431 DOI: 10.1016/j.ijbiomac.2022.02.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 01/03/2023]
Abstract
A new easy-dissolved Tremella fuciformis gum (TFG) from fruiting body was investigated in detail from three aspects: physicochemical characteristics, rheological behavior and in vitro digestion behavior. The results showed that TFG consisted of 73.9% polysaccharides, exhibiting easy solubility in water and good colloidal characteristics and stability. The physical and chemical treatments could decrease the apparent viscosity of TFG solution. The antioxidation activity of TFG remained constant at each static in vitro digestion phase, revealing that this gum could be used as a potential food thickener and antioxidant. The digestion behavior of TFG was also determined using a dynamic in vitro digestive system, DIVRS-II. The results demonstrated that the digestion behavior of TFG should be attributed to the morphology of digestive tracts, continuous secreting and continuous emptying. The antitussive effect of TFG was related to the increase in serum IL-10 content.
Collapse
Affiliation(s)
- Liding Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jianqiu Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jiahuan Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jiacheng Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Mingming Yu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Mengling Zhou
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Meijuan Xi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
4
|
Lv K, Yuan Q, Li H, Li T, Ma H, Gao C, Zhang S, Liu Y, Zhao L. Chlorella pyrenoidosa Polysaccharides as a Prebiotic to Modulate Gut Microbiota: Physicochemical Properties and Fermentation Characteristics In Vitro. Foods 2022; 11:foods11050725. [PMID: 35267359 PMCID: PMC8908982 DOI: 10.3390/foods11050725] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
This study was conducted to investigate the prebiotic potential of Chlorella pyrenoidosa polysaccharides to provide useful information for developing C. pyrenoidosa as a green healthy food. C. pyrenoidosa polysaccharides were prepared and their physicochemical characteristics were determined. The digestibility and fermentation characteristics of C. pyrenoidosa polysaccharides were evaluated using in vitro models. The results revealed that C. pyrenoidosa polysaccharides were composed of five non-starch polysaccharide fractions with monosaccharide compositions of Man, Rib, Rha, GlcA, Glc, Gal, Xyl and Ara. C. pyrenoidosa polysaccharides could not be degraded under saliva and the gastrointestinal conditions. However, the molecular weight and contents of residual carbohydrates and reducing sugars of C. pyrenoidosa polysaccharides were significantly reduced after fecal fermentation at a moderate speed. Notably, C. pyrenoidosa polysaccharides could remarkably modulate gut microbiota, including the promotion of beneficial bacteria, inhibition of growth of harmful bacteria, and reduction of the ratio of Firmicutes to Bacteroidetes. Intriguingly, C. pyrenoidosa polysaccharides can promote growth of Parabacteroides distasonis and increase short-chain fatty acid contents, thereby probably contributing to the promotion of intestinal health and prevention of diseases. Thus, these results suggested that C. pyrenoidosa polysaccharides had prebiotic functions with different fermentation characteristics compared with conventional prebiotics such as fructooligosaccharide, and they may be a new prebiotic for improving human health.
Collapse
Affiliation(s)
- Kunling Lv
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Hong Li
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Tingting Li
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Haiqiong Ma
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Siyuan Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
- Correspondence: (S.Z.); (L.Z.)
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Q.Y.); (H.L.); (T.L.); (H.M.); (C.G.); (Y.L.)
- Correspondence: (S.Z.); (L.Z.)
| |
Collapse
|
5
|
Chen P, Lei S, Tong M, Chang Q, Zheng B, Zhang Y, Zeng H. Effect of polysaccharide fractions from Fortunella margarita on the fecal microbiota of mice and SCFA production in vitro. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Chen P, Tong M, Zeng H, Zheng B, Hu X. Structural characterization and in vitro fermentation by rat intestinal microbiota of a polysaccharide from Porphyra haitanensis. Food Res Int 2021; 147:110546. [PMID: 34399523 DOI: 10.1016/j.foodres.2021.110546] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/06/2023]
Abstract
A sulfated polysaccharide (PHP1) produced by the marine red alga Porphyra haitanensis was structurally characterized, and its effect on rat fecal microbiota fermentations and short chain fatty acids production were investigated. PHP1 was mainly composed of galactose and the main linkage types were identified as → 3)G4Sβ(1 → 3)G(1 → 6)G4Sα(1 → 4)LA(1 → 6)G4Sα(1→. The surface morphology of dried PHP1 films appears to be related to its chemical structure. PHP1 promoted the growth of both propionic acid-producing bacteria and propionic acid production, as well as influencing the composition and abundance of beneficial microbiota species in rats, which may be related to its high level of sulfation. The molecular weight of PHP1 decreased significantly after fermentation, which may result from hydrolysis of the galactan (with α- and β-linkages between galactose residues) by α- or β-galactosidase secreted by the microbiota. These results provided new insights into the structure-activity relationships between P. haitanensis polysaccharide and its regulation of microbiota in vivo.
Collapse
Affiliation(s)
- Peilin Chen
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingyao Tong
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongliang Zeng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- Engineering Research Center of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
7
|
Zhang Y, Xie Q, You L, Cheung PCK, Zhao Z. Behavior of Non-Digestible Polysaccharides in Gastrointestinal Tract: A Mechanistic Review of its Anti-Obesity Effect. EFOOD 2021. [DOI: 10.2991/efood.k.210310.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|