1
|
Wang T, Chen X, Gao Q, Huang C, Wang K, Qiu F. Herb-drug interaction potential of Astragali Radix: a metabolic perspective. Drug Metab Rev 2024:1-17. [PMID: 39692050 DOI: 10.1080/03602532.2024.2441235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Astragali Radix (AR) is one of the most widely used herbs in Asia and has a wide range of biological activities. These activities are attributed to its various compounds like flavonoids, saponins, and polysaccharides. AR and its major components are often used in combination with other drugs for the treatment of diseases such as cancer and cerebral ischemia. With the expanding range of AR combinations, the potential for herb-drug interaction (HDI) has been raised. Key targets in HDI studies include drug-metabolizing enzymes (DMEs) and transporters. Existing studies have shown that AR and its major components have various regulatory effects on these targets, notably CYP2C9, CYP3A4, UGT1A6, and P-gp. AR may contribute to HDI when it is taken with substrates of these biomolecules, such as tolbutamide, midazolam, and digoxin. However, there are also different views in the current study, such as the effect of AR on CYP3A4. To better understand the interactions of AR with drugs, we review the metabolic pathways and pharmacokinetic parameters of the main components of AR. Meanwhile, the regulatory effects and mechanisms of AR on DMEs and transporters are summarized to provide a theoretical and technical basis for the rational use of AR in clinical practice.
Collapse
Affiliation(s)
- Tianwang Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin Key Laboratory of Therapeutic substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- State Key Laboratory of Component based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Xiaofei Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin Key Laboratory of Therapeutic substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- State Key Laboratory of Component based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Chonggang Huang
- Chongqing Academy of Chinese Materia Medica, Chongqing, P.R. China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin Key Laboratory of Therapeutic substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- Tianjin Key Laboratory of Therapeutic substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
- State Key Laboratory of Component based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P.R. China
| |
Collapse
|
2
|
Ding X, Liu J, Chen X, Zhang XH. Exploring the mechanism of luteolin improving immune and inflammatory responses in systemic sclerosis based on systems biology and cell experiments. Int Immunopharmacol 2024; 138:112587. [PMID: 38972211 DOI: 10.1016/j.intimp.2024.112587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
There is a growing trend of applying traditional Chinese medicine (TCM) to treat immune diseases. This study reveals the possible mechanism of luteolin, an active ingredient in the core prescription of TCM, in alleviating systemic sclerosis (SSc) inflammation. Bibliometrics was performed to retrieve the core keywords of SSc inflammation. The key inflammatory indicators in the serum samples of 50 SSc patients were detected by ELISA. Data mining was applied for correlation analysis, association rule analysis, and binary logistic regression analysis on the clinical indicators and medication of 50 SSc patients before and after treatment to determine the core prescription. Network pharmacology was used for identifying candidate genes and pathways; molecular docking was conducted to determine the core monomer components of the prescription, providing a basis for subsequent in vitro molecular mechanism research. The effect of luteolin on SSc-human dermal fibroblasts (HDF) viability and inflammatory factors was evaluated by means of ELISA, RT-PCR, and Western blot. The role of TNF in inflammation was explored by using a TNF overexpression vector, NF-κB inhibitor (PKM2), and SSc-HDF. The involvement of TNF/NF-κB pathway was validated by RT-PCR, Western blot, and immunofluorescence. TCM treatment partially corrected the inflammatory changes in SSc patients, indicating its anti-inflammatory effects in the body. Atractylodes, Yam, Astragalus root, Poria cocos, Pinellia ternata, Salvia miltiorrhiza, Safflower, Cassia twig, and Angelica were identified as the core prescriptions for improving inflammatory indicators. Luteolin was the main active ingredient in the prescription and showed a strong binding energy with TNF and NF-κB. Luteolin exerted anti-inflammatory effects in vitro by reducing inflammatory cytokines in SSc-HDF and inhibiting the activation of TNF/NF-κB. Mechanistically, luteolin inhibited the activation of the TNF/NF-κB pathway in SSc-HDF, as manifested by an increase in extranuclear p-P65 and TNF but a decrease in intranuclear p-P65. Interestingly, the addition of PKM2 augmented the therapeutic function of luteolin against inflammation in SSc-HDF. Our study showed the TCM alleviates the inflammatory response of SSc by inhibiting the activation of the TNF/NF-κB pathway and is an effective therapeutic agent for the treatment of SSc.
Collapse
Affiliation(s)
- Xiang Ding
- First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, PR China; Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Shushan, Hefei, Anhui 230038, PR China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Shushan, Hefei, Anhui 230038, PR China; Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, PR China.
| | - Xiaolu Chen
- First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, PR China; Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Shushan, Hefei, Anhui 230038, PR China
| | - Xian-Heng Zhang
- First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, PR China; Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Shushan, Hefei, Anhui 230038, PR China
| |
Collapse
|
3
|
Zhang Y, Shi M, Peng D, Chen W, Ma Y, Song W, Wang Y, Hu H, Ji Z, Yang F. QiMing granules for diabetic retinopathy: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2024; 15:1429071. [PMID: 39239647 PMCID: PMC11374745 DOI: 10.3389/fphar.2024.1429071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
Objective This study aimed to assess the efficacy and safety of QiMing granules (QM) in the treatment of patients with diabetic retinopathy (DR). Methods We systematically searched multiple databases, including Pubmed, Embase, Web of Science, Cochrane Library, SinoMed, Chinese National Knowledge Infrastructure (CNKI), Wanfang database, and VIP database. Randomized controlled trials (RCTs) of QM in the treatment of DR were collected, and the search time limit was from the establishment of the database to 27 March 2024. Two independent researchers were involved in literature screening, data extraction, and bias risk assessment. The risk of bias in the included studies was assessed using the Risk of Bias Assessment tool for randomized controlled trials of Cochrane Collaboration 2.0 (RoB 2.0). The main outcomes were the overall efficacy, visual acuity, retinal circulation time, macular thickness. The secondary outcomes were the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and glycated hemoglobin (HbA1c). The adverse events was considered the safety outcome. Review Manager 5.4.1 and Stata 15.1 were used for meta-analysis. Data were pooled by random-effects or fixed-effects model to obtain the mean difference (MD), risk ratio (RR), and 95% confidence interval (CI). Results A total of 33 RCTs involving 3,042 patients were included in this study. Overall, we demonstrated that QM had a significant clinical effect on DR. QM alone was superior to conventional treatment (CT) in terms of overall efficacy [RR = 1.45, 95% CI: (1.34, 1.58), p < 0.00001, moderate certainty], retinal circulation time [MD = -0.56, 95% CI: (-1.01, -0.12), p = 0.01] and macular thickness [MD = -11.99, 95% CI: (-23.15, -0.83), p = 0.04]. QM plus CT was superior to CT in terms of overall efficacy [RR = 1.29, 95% CI: (1.24, 1.33), p < 0.00001], visual acuity [MD = 0.14, 95% CI: (0.11, 0.17), p < 0.00001], macular thickness [MD = -14.70, 95% CI: (-21.56, -7.83), p < 0.0001], TG [MD = -0.20, 95% CI: (-0.33, -0.08), p = 0.001, moderate certainty], TC [MD = -0.57, 95% CI: (-1.06, -0.07), p = 0.02], and LDL-C [MD = -0.36, 95% CI: (-0.70, -0.03), p = 0.03]. In terms of safety, the incidence of adverse events in the experimental group was less than that in the control group. The results of the GRADE evidence quality evaluation showed that the evidence quality of outcome indicators was mostly low. Conclusion QM can effectively improve overall efficacy, visual acuity, macular thickness, retinal circulation time, and reduce the levels of TG, TC, and LDL-C. However, due to the limited number of studies included, a small sample size, and a lack of high-quality literature, the possibility of publication bias cannot be excluded. Moreover, biases are present due to differences in study design, such as the absence of placebo use in the control group and a predominant use of combined intervention designs in the control group, along with deficiencies in allocation concealment and blinding methods. Therefore, more multi-center, large-sample, and rigorously designed studies are needed to substantiate this conclusion. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/#recordDetails, identifier CRD42023465165.
Collapse
Affiliation(s)
- Yazi Zhang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menglong Shi
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dehui Peng
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weijie Chen
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yucong Ma
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenting Song
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuetong Wang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haiyin Hu
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Zhaochen Ji
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengwen Yang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Chaudhary P, Janmeda P, Pareek A, Chuturgoon AA, Sharma R, Pareek A. Etiology of lung carcinoma and treatment through medicinal plants, marine plants and green synthesized nanoparticles: A comprehensive review. Biomed Pharmacother 2024; 173:116294. [PMID: 38401516 DOI: 10.1016/j.biopha.2024.116294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Lung cancer, a leading global cause of mortality, poses a significant public health challenge primarily linked to tobacco use. While tobacco contributes to over 90% of cases, factors like dietary choices and radiation exposure also play a role. Despite potential benefits from early detection, cancer patients face hurdles, including drug resistance, chemotherapy side effects, high treatment costs, and limited healthcare access. Traditional medicinal plant knowledge has recently unveiled diverse cancer chemopreventive agents from terrestrial and marine sources. These phytochemicals regulate intricate molecular processes, influencing the immune system, apoptosis, cell cycle, proliferation, carcinogen elimination, and antioxidant levels. In pursuing cutting-edge strategies to combat the diverse forms of cancer, technological advancements have spurred innovative approaches. Researchers have focused on the green synthesis of metallic nanoparticles using plant metabolites. This method offers distinct advantages over conventional physical and chemical synthesis techniques, such as cost-effectiveness, biocompatibility, and energy efficiency. Metallic nanoparticles, through various pathways such as the generation of reactive oxygen species, modulation of enzyme activity, DNA fragmentation, disruption of signaling pathways, perturbation of cell membranes, and interference with mitochondrial function resulting in DNA damage, cell cycle arrest, and apoptosis, exhibit significant potential for preventive applications. Thus, the amalgamation of phytocompounds and metallic nanoparticles holds promise as a novel approach to lung cancer therapy. However, further refinements and advancements are necessary to enhance the environmentally friendly process of metallic nanoparticle synthesis.
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana (Ayurvedic Pharmaceutics), Banaras Hindu University, Varanasi 221005, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India.
| |
Collapse
|
5
|
Bangar A, Khan H, Kaur A, Dua K, Singh TG. Understanding mechanistic aspect of the therapeutic role of herbal agents on neuroplasticity in cerebral ischemic-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117153. [PMID: 37717842 DOI: 10.1016/j.jep.2023.117153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/10/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stroke is one of the leading causes of death and disability. The only FDA-approved therapy for treating stroke is tissue plasminogen activator (tPA), exhibiting a short therapeutic window. Due to this reason, only a small number of patients can be benefitted in this critical period. In addition, the use of endovascular interventions may reverse vessel occlusion more effectively and thus help further improve outcomes in experimental stroke. During recovery of blood flow after ischemia, patients experience cognitive, behavioral, affective, emotional, and electrophysiological changes. Therefore, it became the need for an hour to discover a novel strategy for managing stroke. The drug discovery process has focused on developing herbal medicines with neuroprotective effects via modulating neuroplasticity. AIM OF THE STUDY We gather and highlight the most essential traditional understanding of therapeutic plants and their efficacy in cerebral ischemia-reperfusion injury. In addition, we provide a concise summary and explanation of herbal drugs and their role in improving neuroplasticity. We review the pharmacological activity of polyherbal formulations produced from some of the most frequently referenced botanicals for the treatment of cerebral ischemia damage. MATERIALS AND METHODS A systematic literature review of bentham, scopus, pubmed, medline, and embase (elsevier) databases was carried out with the help of the keywords like neuroplasticity, herbal drugs, neural progenitor cells, neuroprotection, stem cells. The review was conducted using the above keywords to understand the therapeutic and mechanistic role of herbal neuroprotective agents on neuroplasticity in cerebral ischemic-reperfusion injury. RESULTS Neuroplasticity emerged as an alternative to improve recovery and management after cerebral ischemic reperfusion injury. Neuroplasticity is a physiological process throughout one's life in response to any stimuli and environment. Traditional herbal medicines have been established as an adjuvant to stroke therapy since they were used from ancient times and provided promising effects as an adjuvant to experimental stroke. The plants and phytochemicals such as Curcuma longa L., Moringa oliefera Lam, Panax ginseng C.A. Mey., and Rehmannia glutinosa (Gaertn.) DC., etc., have shown promising effects in improving neuroplasticity after experimental stroke. Such effects occur by modulation of various molecular signalling pathways, including PI3K/Akt, BDNF/CREB, JAK/STAT, HIF-1α/VEGF, etc. CONCLUSIONS: Here, we gave a perspective on plant species that have shown neuroprotective effects and can show promising results in promoting neuroplasticity with specific targets after cerebral ischemic reperfusion injury. In this review, we provide the complete detail of studies conducted on the role of herbal drugs in improving neuroplasticity and the signaling pathway involved in the recovery and management of experimental stroke.
Collapse
Affiliation(s)
- Annu Bangar
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | | |
Collapse
|
6
|
Alagawany M, Farag MR, Al-Harthi MA, Asiry KA, Bovera F, Attia YA. The use of Astragalus membranaceus as an eco-friendly alternative for antibiotics in diets of Japanese quail breeders. Poult Sci 2023; 102:102909. [PMID: 37478618 PMCID: PMC10387600 DOI: 10.1016/j.psj.2023.102909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023] Open
Abstract
Mature Japanese quails (n. 180), aged 8 wk, were divided into 6 groups to evaluate the influence of dietary Astragalus membranaceus powder on laying and reproductive performances, quality of egg, and blood metabolites. A completely randomized design experiment was performed including 6 groups. The first group of quails was served as control (basal diet). While, the 2nd, 3rd, 4th, 5th, and 6th group of quails fed a basal diet supplemented with 1, 2, 3, 4, and 5 g of AM powder/kg diet, respectively. Egg number (EN), weight (EW), and mass (EM) were not significantly influenced by dietary Astragalus membranaceus at all tested levels. The hatchability percentage was quadratically improved by dietary supplementation of A. membranaceus. Dietary supplementation of A. membranaceus positively affects (linear and quadratic) liver and kidney functions. Plasma total cholesterol (TC; P < 0.001) and Triglyceride (TG; P < 0.001) were linearly and quadratically decreased by dietary A. membranaceus increasing level. Blood urea level decreased with increasing A. membranaceus levels in the quail diet. The immunoglobulin G (IgG) and M (IgM) were higher than the control at all A. membranaceus levels. In conclusion, feeding quail breeders with Astragalus membranaceus at 1 g/kg diet has beneficial effects on feed conversion ratio; on production at 2 g/kg diet; on hatchability and immunity at 5 g/kg diet; and on total cholesterol at 3 g/kg diet and on shell quality at 4 g/kg diet. A. membranaceus products are expected to be novel valuable dietary supplements for poultry production, depending on the target trait.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Mayada R Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt.
| | - Mohammed A Al-Harthi
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid A Asiry
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fulvia Bovera
- Department of Veterinary Medicine and Animal Production, University of Napoli Federico II, 80137 Napoli, Italy
| | - Youssef A Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Wang L, Jiang Z, Zhang J, Chen K, Zhang M, Wang Z, Wang B, Ye M, Qiao X. Characterization and structure-based protein engineering of a regiospecific saponin acetyltransferase from Astragalus membranaceus. Nat Commun 2023; 14:5969. [PMID: 37749089 PMCID: PMC10519980 DOI: 10.1038/s41467-023-41599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
Acetylation contributes to the bioactivity of numerous medicinally important natural products. However, little is known about the acetylation on sugar moieties. Here we report a saponin acetyltransferase from Astragalus membranaceus. AmAT7-3 is discovered through a stepwise gene mining approach and characterized as the xylose C3'/C4'-O-acetyltransferse of astragaloside IV (1). To elucidate its catalytic mechanism, complex crystal structures of AmAT7-3/1 and AmAT7-3A310G/1 are obtained, which reveal a large active pocket decided by a specific sequence AADAG. Combining with QM/MM computation, the regiospecificity of AmAT7-3 is determined by sugar positioning modulated by surrounding amino acids including #A310 and #L290. Furthermore, a small mutant library is built using semi-rational design, where variants A310G and A310W are found to catalyze specific C3'-O and C4'-O acetylation, respectively. AmAT7-3 and its variants are also employed to acetylate other bioactive saponins. This work expands the understanding of saponin acetyltransferases, and provide efficient catalytic tools for saponin acetylation.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Zhihui Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Jiahe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Zilong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
- Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing, 100191, China.
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
- Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
8
|
Yan X, Miao J, Zhang B, Liu H, Ma H, Sun Y, Liu P, Zhang X, Wang R, Kan J, Yang F, Wu Q. Study on semi-bionic extraction of Astragalus polysaccharide and its anti-aging activity in vivo. Front Nutr 2023; 10:1201919. [PMID: 37528992 PMCID: PMC10389262 DOI: 10.3389/fnut.2023.1201919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/19/2023] [Indexed: 08/03/2023] Open
Abstract
Astragalus membranaceus (A. membranaceus) is a homologous plant with high medicinal and edible value. Therefore, the extraction methods of Astragalus polysaccharide (APS) have attracted the attention of many research groups, but the yield of the active components is still not high. The aim of this study was to extract APS by a semi-bionic extraction method, optimize the extraction process, and evaluate the anti-aging activities of APS in vivo. The results showed that the APS yield was 18.23% when extracted by the semi-bionic extraction method. Anti-aging evaluation in rats showed that APS extracted by this method significantly decreased the malondialdehyde (MDA) content and increased superoxide dismutase (SOD) activity to cope with D-galactose-induced aging. Serum metabolomic analysis indicated that a total of 48 potential biomarkers showed significant differences, mainly involving 5 metabolic pathways. These altered metabolic pathways were mainly related to energy metabolism, amino acid metabolism, and lipid metabolism. These results indicated that the semi-bionic extraction method can effectively improve the yield of APS, and the extracted APS exhibited anti-aging activity in rats. Our study provided a novel and effective method to extract APS and indicated that APS can be used as functional food and natural medicine to delay aging and prevent its complications.
Collapse
Affiliation(s)
- Xinlei Yan
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Jing Miao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Bao Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Huan Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Huifang Ma
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yufei Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Pufang Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiujuan Zhang
- The Institute of Biotechnology, Inner Mongolia Academy of Science and Technology, Hohhot, China
| | - Ruigang Wang
- College of Life Sciences, Inner Mongolia Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Feiyun Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| |
Collapse
|
9
|
Vinh LB, Han YK, Park SY, Kim YJ, Phong NV, Kim E, Ahn BG, Jung YW, Byun Y, Jeon YH, Lee KY. Identification of triterpenoid saponin inhibitors of interleukin (IL)-33 signaling from the roots of Astragalus membranaceus. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
10
|
Szabo K, Ranga F, Elemer S, Varvara RA, Diaconeasa Z, Dulf FV, Vodnar DC. Evaluation of the Astragalus exscapus L. subsp. transsilvanicus Roots' Chemical Profile, Phenolic Composition and Biological Activities. Int J Mol Sci 2022; 23:ijms232315161. [PMID: 36499484 PMCID: PMC9739471 DOI: 10.3390/ijms232315161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Novel and natural molecules for pharmaceutical applications are a contemporary preoccupation in science which prompts research in underexplored environments. Astragalus exscapus ssp. transsilvanicus (Schur) Nyár. (ASTRA) is a plant species endemic to Transylvania, having a very similar root system with that of A. membranaceus (Fisch.) Bunge, known for its health promoting properties. The present study endeavored to perform basic characterization of the ASTRA roots by proximate analysis, to investigate the fatty acid profile of the lipids extracted from the ASTRA roots, to examine the phenolic composition of the root extracts by liquid chromatography, and to evaluate the biological activities through determination of the antioxidant, antimicrobial and cytotoxic capacities of the extracts. The primary compounds found in the ASTRA roots were carbohydrates and lipids, and the fatty acid composition determined by GC-MS showed linoleic acid as preponderant compound with 31.10%, followed by palmitic, oleic and α-linolenic acids with 17.30%, 15.61% and 14.21%, respectively. The methanol extract of the ASTRA roots presented highest phenolic content, Astragaloside IV being the predominant compound with 425.32 ± 0.06 µg/g DW. The antimicrobial assay showed remarkable antimicrobial potential of the extract at a concentration of 0.356 and 0.703 mg ASTRA root powder (DW)/mL, highlighting its efficacy to inhibit S. aureus and S. epidermidis bacterial strains. Furthermore, the cell proliferation assessment showed the noteworthy proficiency of the treatment in inhibiting the proliferation of B16F10 melanoma cells.
Collapse
Affiliation(s)
- Katalin Szabo
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Technological Transfer Center COMPAC, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Floricuta Ranga
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Simon Elemer
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Rodica Anita Varvara
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Zorita Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Francisc Vasile Dulf
- Faculty of Agriculture, Department of Environmental and Plant Protection, University of Agricultural Sciences and Veterinary Medicine, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
11
|
Bao XF, Cao PH, Zeng J, Xiao LM, Luo ZH, Zou J, Wang CX, Zhao ZX, Zhou ZQ, Zhi H, Gao H. Bioactive pterocarpans from the root of Astragalus membranaceus var. mongholicus. PHYTOCHEMISTRY 2022; 200:113249. [PMID: 35609680 DOI: 10.1016/j.phytochem.2022.113249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/14/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Eleven undescribed and three known pterocarpans were isolated and identified from the traditional Chinese medicine "Huang-qi", Astragali Radix (the root of Astragalus membranaceus var. mongholicus (Bunge) P.K.Hsiao). The structures of these pterocarpans were determined using spectroscopic, X-ray crystallographic, quantum chemical calculation, and chemical methods. Pterocarpans, almost exclusively distributed in the family of Leguminosae, are the second largest subgroup of isoflavanoids. However, pterocarpan glycoside number is limited, most of which are glucosides, and only one pterocarpan apioside was isolated from nature. Notably, nine rare apiosyl-containing pterocarpan glycosides were isolated and identified. The hypoglycemic activities of all these compounds were evaluated using α-glucosidase and DPP-IV inhibitory assays respectively, and some isolates displayed the α-glucosidase inhibitory function. The antioxidant activities of all compounds were evaluated using the ORAC and DPPH radical scavenging assays, respectively. All compounds exhibited varying degrees of oxygen radical absorbance capacity, and some compounds displayed DPPH radical scavenging ability.
Collapse
Affiliation(s)
- Xue-Feng Bao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Pei-Hong Cao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Jin Zeng
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Luo-Min Xiao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Zhi-Hui Luo
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Jian Zou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Chuan-Xi Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Zhong-Xiang Zhao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Zheng-Qun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Hui Zhi
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China; College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
12
|
Network Pharmacology-Based Investigation on the Mechanism of the JinGuanLan Formula in Treating Acne Vulgaris. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6944792. [PMID: 35873639 PMCID: PMC9300327 DOI: 10.1155/2022/6944792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/06/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022]
Abstract
Background JinGuanLan (JGL) formula is a traditional Chinese medicine (TCM) developed by the Department of Pharmacology at the First Hospital of Lanzhou University. The network pharmacology approach was applied to determine the potential active compounds, therapeutic targets, and main pathways of the JGL formula to evaluate its application value in acne vulgaris. Methods Data on the active compounds and their related targets were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Acne vulgaris-related targets were searched from the Online Mendelian Inheritance in Man (OMIM) database, GeneCards Database, Comparative Toxicogenomics Database (CTD), Therapeutic Target Database (TTD), and DisGeNET Database. Targets intersecting between JGL- and acne vulgaris-related targets were chosen as potential therapeutic targets. The protein-protein interaction (PPI) network of potential therapeutic targets was visualized using Cytoscape software based on the PPI data collected from the STRING database. Three topological features, namely, "Degree," "MCC," and "EPC" of each node in the PPI network were calculated using the cytoHubba plugin of Cytoscape to excavate the core targets. R program was used for the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the potential therapeutic targets. Finally, the compound-target-pathway network was constructed. Result Among the 148 active compounds that were identified, quercetin and kaempferol showed the highest degree of target interaction and thus may play essential roles in the pharmacological effect of the JGL formula for acne treatment. Among the 97 potential therapeutic targets that were screened out, the 6 core targets were TNF, JUN, IL6, STAT3, MAPK1, and MAPK3. A total of 2260 terms of GO enrichment analysis were obtained, including 2090 for biological processes (BP), 37 for cellular components (CC), and 133 for molecular function (MF). A total of 156 enriched KEGG pathways were identified, including TNF, IL-17, Th17 cell differentiation, MAPK, PI3K-Akt, T cell receptor, and Toll-like receptor signalling pathways. Conclusion This work showed that the JGL formula might reverse the pathological changes associated with acne vulgaris through its antiinflammatory effect and regulate the excessive lipogenesis in sebaceous glands via different signalling pathways. This new drug has application value and is worthy of further research and development.
Collapse
|
13
|
Kozhevnikova OS, Devyatkin VA, Tyumentsev MA, Rudnitskaya EA, Fursova AZ, Kolosova NG. Astragalus membranaceus Increases Leukocyte Telomere Length, but Does Not Suppress Development of Accelerated Senescence Signs in OXYS Rats. ADVANCES IN GERONTOLOGY 2022. [DOI: 10.1134/s2079057022020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Guo L, Sun Y, Ping X, Liu J, Wang X, Qin N. Chemical composition and antibacterial activity of ethyl acetate extract of
Astragalus membranaceus
aerial parts. J Food Saf 2021. [DOI: 10.1111/jfs.12947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Lili Guo
- College of Pharmaceutical and Food Engineering Shanxi University of Chinese Medicine Jinzhong China
| | - Yu Sun
- School of Food and Biological Engineering Jiangsu University Zhenjiang China
| | - Xueli Ping
- College of Pharmaceutical and Food Engineering Shanxi University of Chinese Medicine Jinzhong China
| | - Jing Liu
- College of Pharmaceutical and Food Engineering Shanxi University of Chinese Medicine Jinzhong China
| | - Xiaomin Wang
- College of Pharmaceutical and Food Engineering Shanxi University of Chinese Medicine Jinzhong China
| | - Nan Qin
- College of Pharmaceutical and Food Engineering Shanxi University of Chinese Medicine Jinzhong China
| |
Collapse
|
15
|
Park KR, Park JE, Kim B, Kwon IK, Hong JT, Yun HM. Calycosin-7-O-β-Glucoside Isolated from Astragalus membranaceus Promotes Osteogenesis and Mineralization in Human Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms222111362. [PMID: 34768792 PMCID: PMC8583672 DOI: 10.3390/ijms222111362] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Stem cells have received attention in various diseases, such as inflammatory, cancer, and bone diseases. Mesenchymal stem cells (MSCs) are multipotent stem cells that are critical for forming and repairing bone tissues. Herein, we isolated calycosin-7-O-β-glucoside (Caly) from the roots of Astragalus membranaceus, which is one of the most famous medicinal herbs, and investigated the osteogenic activities of Caly in MSCs. Caly did not affect cytotoxicity against MSCs, whereas Caly enhanced cell migration during the osteogenesis of MSCs. Caly increased the expression and enzymatic activities of ALP and the formation of mineralized nodules during the osteogenesis of MSCs. The osteogenesis and bone-forming activities of Caly are mediated by bone morphogenetic protein 2 (BMP2), phospho-Smad1/5/8, Wnt3a, phospho-GSK3β, and phospho-AKT, inducing the expression of runt-related transcription factor 2 (RUNX2). In addition, Caly-mediated osteogenesis and RUNX2 expression were attenuated by noggin and wortmannin. Moreover, the effects were validated in pre-osteoblasts committed to the osteoblast lineages from MSCs. Overall, our results provide novel evidence that Caly stimulates osteoblast lineage commitment of MSCs by triggering RUNX2 expression, suggesting Caly as a potential anabolic drug to prevent bone diseases.
Collapse
Affiliation(s)
- Kyung-Ran Park
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea;
- Medical Device Research Center, Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Korea;
| | - Ji Eun Park
- National Institute for Korean Medicine Development, Gyeongsan 38540, Korea; (J.E.P.); (B.K.)
| | - Bomi Kim
- National Institute for Korean Medicine Development, Gyeongsan 38540, Korea; (J.E.P.); (B.K.)
| | - Il Keun Kwon
- Medical Device Research Center, Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Korea;
- Department of Dental Materials, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si 28160, Korea
- Correspondence: (J.T.H.); (H.-M.Y.); Tel.: +82-02-961-0691 (H.-M.Y.); Fax: +82-02-960-1457 (H.-M.Y.)
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: (J.T.H.); (H.-M.Y.); Tel.: +82-02-961-0691 (H.-M.Y.); Fax: +82-02-960-1457 (H.-M.Y.)
| |
Collapse
|
16
|
Sheik A, Kim K, Varaprasad GL, Lee H, Kim S, Kim E, Shin JY, Oh SY, Huh YS. The anti-cancerous activity of adaptogenic herb Astragalus membranaceus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153698. [PMID: 34479785 DOI: 10.1016/j.phymed.2021.153698] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/21/2021] [Accepted: 07/31/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Cancer is the most dreadful disease increasing rapidly causing an economic burden globally. A standardized chemotherapy regimen planned with curative intent weakens the immune system and damages healthy cells making the patient prone to infections and severe side effects with pain and fatigue. PURPOSE Astragalus membranaceus (AM) has a long history of use in the treatment of severe adverse diseases. For thousands of years, it has been used in mixed herbal decoctions for the treatment of cancer. Due to growing interest in this plant root for its application to treat various types of cancers and tumors, has attracted researcher's interest. METHOD The literature search was done from core collections of electronic databases such as Web of Science, Google Scholar, PubMed and Science Direct using keywords given below and terms like pharmacological and phytochemical details of this plant. OUTCOME Astragalus membranaceus has demonstrated the ability to modulate the immune system during drug therapy making the patient physically fit and prolonged life. It has become a buzzword of herbalists as it is one of the best of seven important adaptogenic herbs with a protective effect against chronic stress and cancer. It demonstrated significant amelioration of the perilous toxic effects induced by concurrently administered chemo onco-drugs. CONCLUSION The natural phytoconstituents of this plant formononetin, astragalus polysaccharide, and astragalosides which show high potential anti-cancerous activity are studied and discussed in detail. One of them are used in clinical trials to overcome cancer related fatigue. Overall, this review aims to provide an insight into Astragalus membranaceus status in cancer therapy.
Collapse
Affiliation(s)
- Aliya Sheik
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Kwanwoo Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Ganji Lakshmi Varaprasad
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Hoomin Lee
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Suheon Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Eunsu Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Jin-Yong Shin
- Chungcheong Division Reliability Center, Korea Confomity Laboratories, Yuseong-gu, Daejeon, 34027, Republic of Korea
| | - Seo Yeong Oh
- Research Group of Consumer Safety, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Engineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea.
| |
Collapse
|
17
|
Sheng Z, Liu J, Yang B. Structure Differences of Water Soluble Polysaccharides in Astragalus membranaceus Induced by Origin and Their Bioactivity. Foods 2021; 10:1755. [PMID: 34441532 PMCID: PMC8395020 DOI: 10.3390/foods10081755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/31/2022] Open
Abstract
Astragalus membranaceus is a functional food with multiple bioactivities. It presents differentiated health benefits due to origins. Polysaccharides (APS) are the leading bioactive macromolecules of A. membranaceus, which are highly related to its health benefits. However, the effect of origin on the structural characteristics of APSs remains unclear. In this work, polysaccharides from four origins were isolated and identified by NMR. The results showed APSs of four origins had identical monosaccharide composition and glycosidic linkage. Rhamnogalacturonan II pectins and α-(1→4)-glucan were the dominant polysaccharides. However, the level of methyl ester in pectins varied to a large extent. The molecular weight profiles of APSs were also different. Inner Mongolia APS had the largest percentage of 20-40 kDa polysaccharides. Molecular weight and methyl ester level were two important parameters determining the difference of APSs from four origins. These results were helpful to recognize the origin-related quality of A. membranaceus.
Collapse
Affiliation(s)
- Zhili Sheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China;
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Junmei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China;
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
18
|
Lee B, Park CH, Kim JY, Hyeonbin O, Kim D, Cho DK, Kim YS, Choi YM. Effects of Astragalus membranaceus, Adenophora triphylla, and Ulmus pumila Extracts on Quality Characteristics and Storage Stability of Sous-Vide Cooked Chicken Breasts. Food Sci Anim Resour 2021; 41:664-673. [PMID: 34291214 PMCID: PMC8277173 DOI: 10.5851/kosfa.2021.e24] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 11/06/2022] Open
Abstract
This study aimed to investigate the influence of Astragalus membranaceus (AM), Adenophora triphylla (AT), and Ulmus pumila (UP) extracts on the quality traits, palatability, and storage stability of sous-vide (SV) cooked chicken breasts. Chicken breasts were marinated in AM, AT, or UP extracts for 1 h, and then consistently cooked at a constant temperature of 60°C for 2 h. SV cooked chicken breasts with the UP extract exhibited lower lightness and higher yellowness values on the surface region compared to those with the AM and AT extracts (p<0.05). The control and UP groups displayed a similar overall visual acceptability (p>0.05), although the UP group had lower color acceptability (p<0.01). The UP group also had higher flavor and lower off-flavor intensities compared to the control group (p<0.05), although similar scores were observed in tenderness attributes and juiciness among the groups (p>0.05). Owing to these results regarding overall sensory acceptability, samples from the UP group were more preferred by the trained panelists compared to samples from the control group (p<0.001). On 14 d of cold storage, all the groups with herbal medicinal extracts exhibited a lower concentration of thiobarbituric acid-reactive substances than the control group (p<0.05), and the AT and UP groups showed lower values compared to the AM group due to their higher flavonoid contents (p<0.001). Therefore, meat marination with herbal plant extracts before SV cooking can be effective for enhancing the overall quality of SV cooked chicken breast.
Collapse
Affiliation(s)
- Boin Lee
- Department of Animal Sciences and Biotechnology, Kyungpook National University, Sangju 37224, Korea
| | - Chun Ho Park
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul 02841, Korea.,Department of Hotel and Food Service Culinary Art, Daejeon Health Institute of Technology, Daejeon 34504, Korea
| | - Jae Yeong Kim
- Department of Animal Sciences and Biotechnology, Kyungpook National University, Sangju 37224, Korea
| | - O Hyeonbin
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul 02841, Korea
| | - Dasol Kim
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul 02841, Korea
| | - Dong Kook Cho
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul 02841, Korea.,Department of Culinary, Hotel Lotte Co. Ltd., Seoul 04533, Korea
| | - Young Soon Kim
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul 02841, Korea
| | - Young Min Choi
- Department of Animal Sciences and Biotechnology, Kyungpook National University, Sangju 37224, Korea
| |
Collapse
|