1
|
Bi J, Fu X, Jiang Y, Wang J, Li D, Xiao M, Mou H. Low molecular weight galactomannan alleviates diarrhea induced by senna leaf in mice via intestinal barrier improvement and gut microbiota modulation. Food Funct 2025. [PMID: 39812735 DOI: 10.1039/d4fo04375h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Low molecular weight galactomannan (LMGM), a soluble dietary fibre derived from guar gum, is recognized for its prebiotic functions, including promoting the growth of beneficial intestinal bacteria and the production of short-chain fatty acids, but the mechanism of alleviating diarrhea is not fully understood. This study established an acute diarrhea mouse model using senna leaf decoction and evaluated the therapeutic effects of LMGM by monitoring diarrhea scores, loose stool prevalence, intestinal tissue pathology and gene expression, and gut microbiota composition and metabolisms. The results indicated that LMGM significantly reduced diarrhea scores and loose stool prevalence within two hours post-treatment. Hematoxylin and eosin staining and quantitative real-time polymerase chain reaction analysis revealed that LMGM improved intestinal epithelial structure and up-regulated the expression of zonula occludens 1, occludin, mucin 2, aquaporin 3, and aquaporin 4 in ileum, jejunum, and colon tissues. Moreover, LMGM increased the abundance of beneficial bacteria such as Lactobacillaceae and Lachnospiraceae, and decreased Prevotellaceae in the cecum. Furthermore, LMGM promoted short-chain fatty acid production and reduced ammonia nitrogen and skatole concentrations in the intestinal content. The study suggests that LMGM could serve as a functional prebiotic for diarrhea alleviation, potentially by enhancing the intestinal barrier, modulating water transportation, and regulating the microbiota composition.
Collapse
Affiliation(s)
- Jiayuan Bi
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polyacrylamide of Jiangxi Province, Nanchang University, No. 235 Nanjing East Road, Nanchang, 330047, China.
| | - Yun Jiang
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Jia Wang
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Mengshi Xiao
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, No. 1299 Sansha Road, Qingdao, 266404, China.
| |
Collapse
|
2
|
Jin S, Xu H, Yang C, O K. Regulation of oxidative stress in the intestine of piglets after enterotoxigenic Escherichia coli (ETEC) infection. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119711. [PMID: 38574824 DOI: 10.1016/j.bbamcr.2024.119711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is recognized globally as a major gastrointestinal pathogen that impairs intestinal function. ETEC infection can lead to oxidative stress and disruption of intestinal integrity. The present study investigated the mechanism of increased oxidative stress and whether restoration of antioxidant defense could improve intestinal integrity in a piglet model with ETEC infection. Weaned piglets were divided into three groups: control, ETEC-infection and ETEC-infection with antibiotic supplementation. The infection caused a significant elevation of serum diamine oxidase activity and D-lactate levels coupled with a reduced intestinal (mid-jejunum) tight-junction protein expression, suggesting increased intestinal permeability and impaired gut function. The infection also inhibited nuclear factor erythroid 2-related factor 2 (Nrf2) activation, decreased the expression of glutathione synthesizing enzymes, superoxide dismutase-1 (SOD1), and heme oxygenase-1 (HO-1) in the intestine. This led to a decreased antioxidant glutathione level and an increased lipid peroxidation in the intestine and serum, indicating oxidative stress. The infection stimulated the expression of pro-inflammatory cytokines (IL-6, TNF-α). Antibiotic supplementation attenuated oxidative stress, in part, through restoration of glutathione levels and antioxidant enzyme expression in the intestine. Such a treatment enhanced tight-junction protein expression and improved intestinal function. Furthermore, induction of oxidative stress in Caco2 cells by hydrogen peroxide inhibited tight-junction protein expression and stimulated inflammatory cytokine expression. Glutathione supplementation effectively attenuated oxidative stress and restored tight-junction protein expression. These results suggest that downregulation of Nrf2 activation may weaken antioxidant defense and increase oxidative stress in the intestine. Mitigation of oxidative stress can improve intestinal function after infection.
Collapse
Affiliation(s)
- Shunshun Jin
- Department of Animal Science, University of Manitoba, Canada; St. Boniface Hospital Research Centre, Canada
| | - Haoxiang Xu
- Department of Animal Science, University of Manitoba, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Canada
| | - Karmin O
- Department of Animal Science, University of Manitoba, Canada; St. Boniface Hospital Research Centre, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Canada.
| |
Collapse
|
3
|
Duarte ME, Garavito-Duarte Y, Kim SW. Impacts of F18 +Escherichia coli on Intestinal Health of Nursery Pigs and Dietary Interventions. Animals (Basel) 2023; 13:2791. [PMID: 37685055 PMCID: PMC10487041 DOI: 10.3390/ani13172791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
This review focused on the impact of F18+E. coli on pig production and explored nutritional interventions to mitigate its deleterious effects. F18+E. coli is a primary cause of PWD in nursery pigs, resulting in substantial economic losses through diminished feed efficiency, morbidity, and mortality. In summary, the F18+E. coli induces intestinal inflammation with elevated IL6 (60%), IL8 (43%), and TNF-α (28%), disrupting the microbiota and resulting in 14% villus height reduction. Besides the mortality, the compromised intestinal health results in a 20% G:F decrease and a 10% ADFI reduction, ultimately culminating in a 28% ADG decrease. Among nutritional interventions to counter F18+E. coli impacts, zinc glycinate lowered TNF-α (26%) and protein carbonyl (45%) in jejunal mucosa, resulting in a 39% ADG increase. Lactic acid bacteria reduced TNF-α (36%), increasing 51% ADG, whereas Bacillus spp. reduced IL6 (27%), increasing BW (12%). Lactobacillus postbiotic increased BW (14%) and the diversity of beneficial bacteria. Phytobiotics reduced TNF-α (23%) and IL6 (21%), enhancing feed efficiency (37%). Additional interventions, including low crude protein formulation, antibacterial minerals, prebiotics, and organic acids, can be effectively used to combat F18+E. coli infection. These findings collectively underscore a range of effective strategies for managing the challenges posed by F18+E. coli in pig production.
Collapse
Affiliation(s)
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; (M.E.D.); (Y.G.-D.)
| |
Collapse
|
4
|
Duan Q, Yu B, Huang Z, Luo Y, Zheng P, Mao X, Yu J, Luo J, Yan H, He J. Protective effect of sialyllactose on the intestinal epithelium in weaned pigs upon enterotoxigenic Escherichia coli challenge. Food Funct 2022; 13:11627-11637. [PMID: 36269305 DOI: 10.1039/d2fo02066a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Sialyllactose (SL), one of the most abundant oligosaccharides present in porcine breast milk, has been implicated in many biological functions, including the prebiotic and immune-modulating effects. This study was conducted to investigate the influences of dietary SL supplementation on intestinal barrier functions exposure to enterotoxigenic Escherichia coli (ETEC) in a porcine model. Thirty-two pigs were assigned to four treatments, fed with basal or SL-containing (5.0 g kg-1) diet, and orally infused with ETEC or culture medium. SL supplementation significantly reduced the diarrhea incidence and the abundance of E. coli in feces (P < 0.05). Interestingly, SL attenuated ETEC-induced intestinal epithelium injury as indicated by the decreased serum concentrations of diamine oxidase (DAO) and D-lactate and reduced the number of apoptotic cells in the jejunal epithelium (P < 0.05). Moreover, SL not only elevated the abundance of the tight-junction protein ZO-1 in the duodenal and ileal epithelium but also elevated the antioxidant capacity and the number of SIgA positive cells in the jejunal epithelium upon the ETEC challenge (P < 0.05). Importantly, SL decreased the expression levels of inflammation-related genes such as the tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), myeloid differentiation factor 88 (MyD88) in the duodenum, and ileum upon ETEC challenge (P < 0.05). SL also significantly elevated the expression levels of two critical antioxidant genes such as the nuclear factor erythroid-2 related factor 2 (Nrf-2) and kelch-like ECH-associated protein 1 (KEAP-1) in the jejunum (P < 0.05). These results suggested that SL can alleviate ETEC-induced intestinal epithelium injury, which is associated with suppressed inflammation, improved intestinal immunity, antioxidant capacity, and improved intestinal epithelial functions.
Collapse
Affiliation(s)
- Qiming Duan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.
- Key Laboratory of Animal Disease-resistant Nutrition, Chengdu, Sichuan 611130, P. R. China
| |
Collapse
|
5
|
Mavrogeni ME, Asadpoor M, Henricks PAJ, Keshavarzian A, Folkerts G, Braber S. Direct Action of Non-Digestible Oligosaccharides against a Leaky Gut. Nutrients 2022; 14:4699. [PMID: 36364961 PMCID: PMC9655944 DOI: 10.3390/nu14214699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
The epithelial monolayer is the primary determinant of mucosal barrier function, and tight junction (TJ) complexes seal the paracellular space between the adjacent epithelial cells and represent the main "gate-keepers" of the paracellular route. Impaired TJ functionality results in increased permeation of the "pro-inflammatory" luminal contents to the circulation that induces local and systemic inflammatory and immune responses, ultimately triggering and/or perpetuating (chronic) systemic inflammatory disorders. Increased gut leakiness is associated with intestinal and systemic disease states such as inflammatory bowel disease and neurodegenerative diseases such as Parkinson's disease. Modulation of TJ dynamics is an appealing strategy aiming at inflammatory conditions associated with compromised intestinal epithelial function. Recently there has been a growing interest in nutraceuticals, particularly in non-digestible oligosaccharides (NDOs). NDOs confer innumerable health benefits via microbiome-shaping and gut microbiota-related immune responses, including enhancement of epithelial barrier integrity. Emerging evidence supports that NDOs also exert health-beneficial effects on microbiota independently via direct interactions with intestinal epithelial and immune cells. Among these valuable features, NDOs promote barrier function by directly regulating TJs via AMPK-, PKC-, MAPK-, and TLR-associated pathways. This review provides a comprehensive overview of the epithelial barrier-protective effects of different NDOs with a special focus on their microbiota-independent modulation of TJs.
Collapse
Affiliation(s)
- Maria Eleni Mavrogeni
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Mostafa Asadpoor
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Ali Keshavarzian
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
6
|
Castro J, Barros MM, Araújo D, Campos AM, Oliveira R, Silva S, Almeida C. Swine enteric colibacillosis: Current treatment avenues and future directions. Front Vet Sci 2022; 9:981207. [PMID: 36387374 PMCID: PMC9650617 DOI: 10.3389/fvets.2022.981207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/10/2022] [Indexed: 09/10/2023] Open
Abstract
Enteric colibacillosis is a common disease in nursing and weanling pigs. It is caused by the colonization of the small intestine by enterotoxigenic strains of Escherichia coli (ETEC) that make use of specific fimbria or pili to adhere to the absorptive epithelial cells of the jejunum and ileum. Once attached, and when both the immunological systems and the gut microbiota are poorly developed, ETEC produce one or more enterotoxins that can have local and, further on, systemic effects. These enterotoxins cause fluid and electrolytes to be secreted into the intestinal lumen of animals, which results in diarrhea, dehydration, and acidosis. From the diversity of control strategies, antibiotics and zinc oxide are the ones that have contributed more significantly to mitigating post-weaning diarrhea (PWD) economic losses. However, concerns about antibiotic resistance determined the restriction on the use of critically important antimicrobials in food-producing animals and the prohibition of their use as growth promoters. As such, it is important now to begin the transition from these preventive/control measures to other, more sustainable, approaches. This review provides a quick synopsis of the currently approved and available therapies for PWD treatment while presenting an overview of novel antimicrobial strategies that are being explored for the control and treatment of this infection, including, prebiotics, probiotics, synbiotics, organic acids, bacteriophages, spray-dried plasma, antibodies, phytogenic substances, antisense oligonucleotides, and aptamers.
Collapse
Affiliation(s)
- Joana Castro
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
| | - Maria Margarida Barros
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
| | - Daniela Araújo
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
| | - Ana Maria Campos
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
| | - Ricardo Oliveira
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sónia Silva
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
- Centre of Biological Engineering, Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Almeida
- National Institute for Agrarian and Veterinarian Research (INIAV), Vila do Conde, Portugal
- LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- Centre of Biological Engineering, Braga, Portugal
- LABBELS – Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
7
|
Advances in Prebiotic Mannooligosaccharides. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|