1
|
Li Y, Zhang Y, Zhao J, Zhang X, Liu S, Qi H, Qiao F, Yao H. Isolation and evaluation of Pediococcus acidilactici YH-15 from cat milk: Potential probiotic effects and antimicrobial properties. Heliyon 2024; 10:e39539. [PMID: 39498095 PMCID: PMC11533615 DOI: 10.1016/j.heliyon.2024.e39539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024] Open
Abstract
The study aimed to screen for the possible presence of lactic acid bacteria (LAB) in cat milk in order to evaluate their probiotic properties. The isolates were characterized by biochemical identification, morphological tests and 16S rDNA sequencing. Afterward, gastrointestinal passage, in vitro safety and probiotic properties were evaluated. The results showed that the isolates had 10 strains of Pediococcus acidilactici permitted in the feed additive catalog. The high survival rate in the acid and bile salt resistance test reflected the good strain tolerance of the isolates to the simulated gastrointestinal conditions of the host in vitro. The mean inhibitory diameters of the 10 strains against chloramphenicol and tetracycline were 23.6 mm and 17.4 mm, respectively; none of the hemolytic tests showed α/β hemolytic ring. The bacteriostatic test showed that P. acidilactici YH-9, YH-14 and YH-15 had inhibitory effects on four common pathogenic bacteria, including Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Streptococcus. The adhesion test showed that P. acidilactici YH-15 had good adhesion to HT-29 cells. Based on these results, we concluded that P. acidilactici YH-15 extracted from cat milk has potential application as a clinical probiotic therapy and health care product.
Collapse
Affiliation(s)
- Yahui Li
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yiwen Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Junxin Zhao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Xuan Zhang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Shiwei Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Hanmeng Qi
- Chinese Academy of Sciences Beijing Institute for Stem Cell and Regenerative Medicine, China
| | - Fuqiang Qiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Hua Yao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
2
|
Zhang M, Qiao H, Yang S, Kwok LY, Zhang H, Zhang W. Human Breast Milk: The Role of Its Microbiota and Metabolites in Infant Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10665-10678. [PMID: 38691667 DOI: 10.1021/acs.jafc.3c07690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
This review explores the role of microorganisms and metabolites in human breast milk and their impact on neonatal health. Breast milk serves as both a primary source of nutrition for newborns and contributes to the development and maturation of the digestive, immunological, and neurological systems. It has the potential to reduce the risks of infections, allergies, and asthma. As our understanding of the properties of human milk advances, there is growing interest in incorporating its benefits into personalized infant nutrition strategies, particularly in situations in which breastfeeding is not an option. Future infant formula products are expected to emulate the composition and advantages of human milk, aligning with an evolving understanding of infant nutrition. The long-term health implications of human milk are still under investigation.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hui Qiao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuwei Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenyi Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
3
|
Arslan D, Tuccitto N, Auditore A, Licciardello A, Marletta G, Riolo M, La Spada F, Conti Taguali S, Calpe J, Meca G, Pane A, Cacciola SO, Karakeçili A. Chitosan-based films grafted with citrus waste-derived antifungal agents: An innovative and sustainable approach to enhance post-harvest preservation of citrus fruit. Int J Biol Macromol 2024; 264:130514. [PMID: 38423440 DOI: 10.1016/j.ijbiomac.2024.130514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
This paper reports the synthesis, characterization, and properties of chitosan films (CHI) grafted with a natural antifungal agent with the aim of developing active films of natural origin to prevent post-harvest losses of citrus fruit. The antifungal agent was prepared by fermentation using lemon peel (AntiFun-LM), a citrus waste, and grafted on chitosan using different coupling agents (CHI/AntiFun-LM). Bioactive films were prepared by solvent casting. FTIR-ATR and ToF-SIMS analyses provided compelling evidence of the successful grafting process. TGA-DSC demonstrated that the films are stable after grafting. SEM studies showed the continuous and compact surface of the films. WCA measurements proved that CHI/AntiFun-LM films are more hydrophilic than CHI films. Moreover, the CHI/AntiFun-LM films showed stronger UV shielding effect when compared to CHI. The biological evaluation demonstrated that CHI/AntiFun-LM films gained considerable antifungal properties against most fungi responsible for post-harvest decay. Cytotoxicity tests showed that CHI/AntiFun-LM films did not cause any toxic effect against L929 fibroblasts. This study highlights the great potential of chemical grafting of antifungal agents produced from citrus waste to chitosan and preparation of natural-based films to act as a powerful alternative in post-harvest protection of citrus fruit in a perspective of circular economy.
Collapse
Affiliation(s)
- Deniz Arslan
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, 06100 Tandoğan, Ankara, Turkey; Graduate School of Natural and Applied Sciences, Ankara University, 06110 Dışkapı, Ankara, Turkey
| | - Nunzio Tuccitto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria n° 6, Catania, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Italy
| | - Alessandro Auditore
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Italy
| | - Antonino Licciardello
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria n° 6, Catania, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Italy
| | - Giovanni Marletta
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria n° 6, Catania, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Italy
| | - Mario Riolo
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Federico La Spada
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | | | - Jorge Calpe
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Antonella Pane
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Ayşe Karakeçili
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, 06100 Tandoğan, Ankara, Turkey.
| |
Collapse
|
4
|
Siddiqui SA, Erol Z, Rugji J, Taşçı F, Kahraman HA, Toppi V, Musa L, Di Giacinto G, Bahmid NA, Mehdizadeh M, Castro-Muñoz R. An overview of fermentation in the food industry - looking back from a new perspective. BIORESOUR BIOPROCESS 2023; 10:85. [PMID: 38647968 PMCID: PMC10991178 DOI: 10.1186/s40643-023-00702-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/25/2023] [Indexed: 04/25/2024] Open
Abstract
Fermentation is thought to be born in the Fertile Crescent, and since then, almost every culture has integrated fermented foods into their dietary habits. Originally used to preserve foods, fermentation is now applied to improve their physicochemical, sensory, nutritional, and safety attributes. Fermented dairy, alcoholic beverages like wine and beer, fermented vegetables, fruits, and meats are all highly valuable due to their increased storage stability, reduced risk of food poisoning, and enhanced flavor. Over the years, scientific research has associated the consumption of fermented products with improved health status. The fermentation process helps to break down compounds into more easily digestible forms. It also helps to reduce the amount of toxins and pathogens in food. Additionally, fermented foods contain probiotics, which are beneficial bacteria that help the body to digest food and absorb nutrients. In today's world, non-communicable diseases such as cardiovascular disease, type 2 diabetes, cancer, and allergies have increased. In this regard, scientific investigations have demonstrated that shifting to a diet that contains fermented foods can reduce the risk of non-communicable diseases. Moreover, in the last decade, there has been a growing interest in fermentation technology to valorize food waste into valuable by-products. Fermentation of various food wastes has resulted in the successful production of valuable by-products, including enzymes, pigments, and biofuels.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315, Straubing, Germany.
- German Institute of Food Technologies (DIL E.V.), Prof.-Von-Klitzing Str. 7, 49610, Quakenbrück, Germany.
| | - Zeki Erol
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Jerina Rugji
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Hatice Ahu Kahraman
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal Campus, 15030, Burdur, Turkey
| | - Valeria Toppi
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Giacomo Di Giacinto
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
| | - Mohammad Mehdizadeh
- Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
- Ilam Science and Technology Park, Ilam, Iran
| | - Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista, 50110, Toluca de Lerdo, Mexico.
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdansk, Poland.
| |
Collapse
|
5
|
Soto LP, Sirini NE, Frizzo LS, Zbrun MV, Zimmermann JA, Ruiz MJ, Rosmini MR, Sequeira GJ, Miotti C, Signorini ML. Lactic acid bacteria viability in different refrigerated food matrices: a systematic review and Meta‑analysis. Crit Rev Food Sci Nutr 2023; 63:12178-12206. [PMID: 35848093 DOI: 10.1080/10408398.2022.2099807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aim of this systematic review and meta-analysis was to determine which variables affect the viability of lactic acid bacteria (LAB) added to different types of refrigerated foods during the first 28 days. Scopus, ScienceDirect, PubMed and Cochrane Central Register of Reviews databases were searched from 1997 to April 2022. A total of 278 studies, which showed randomized and controlled experiments published in peer reviewed journals, were included. The viability of LAB in different moments during the storage process was synthesized as mean point estimate (MPE) via random-effects meta-analyses and the effect of multiple factors on the LAB´s viability was evaluated by multiple meta-regression. The meta-analysis showed that the decrease in LAB viability will be more abrupt the greater the initial dose. The physical structure of food may influence bacterial viability. Fruit was the type of product that most quickly lost viability. Co-culture of two or more species did not affect viability. Preservation methods had an unfavorable effect and prebiotics had a beneficial effect on bacterial viability. Viability was genus dependent. The data obtained in this study provide an overview of the factors to be taken into account for the design of new foods.
Collapse
Affiliation(s)
- Lorena P Soto
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina
- Department of Public Health, Faculty of Veterinary Science, National University of the Littoral, Esperanza, Province of Santa Fe, Argentina
| | - Noelí E Sirini
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina
| | - Laureano S Frizzo
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina
- Department of Public Health, Faculty of Veterinary Science, National University of the Littoral, Esperanza, Province of Santa Fe, Argentina
| | - María V Zbrun
- Department of Public Health, Faculty of Veterinary Science, National University of the Littoral, Esperanza, Province of Santa Fe, Argentina
- Dairy Chain Research Institute, EEA Rafaela, Rafaela, Province of Santa Fe, Argentina
| | - Jorge A Zimmermann
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina
| | - María J Ruiz
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Province of Santa Fe, Argentina
| | - Marcelo R Rosmini
- Department of Public Health, Faculty of Veterinary Science, National University of the Littoral, Esperanza, Province of Santa Fe, Argentina
| | - Gabriel J Sequeira
- Department of Public Health, Faculty of Veterinary Science, National University of the Littoral, Esperanza, Province of Santa Fe, Argentina
| | - Camila Miotti
- Dairy Chain Research Institute, EEA Rafaela, Rafaela, Province of Santa Fe, Argentina
| | - Marcelo L Signorini
- Department of Public Health, Faculty of Veterinary Science, National University of the Littoral, Esperanza, Province of Santa Fe, Argentina
- Dairy Chain Research Institute, EEA Rafaela, Rafaela, Province of Santa Fe, Argentina
| |
Collapse
|
6
|
Castro-López C, García-Galaz A, García HS, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. Potential probiotic lactobacilli strains isolated from artisanal Mexican Cocido cheese: evidence-based biosafety and probiotic action-related traits on in vitro tests. Braz J Microbiol 2023; 54:2137-2152. [PMID: 37450104 PMCID: PMC10485211 DOI: 10.1007/s42770-023-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
The biosafety of four potentially probiotic lactobacilli strains, isolated from artisanal Mexican Cocido cheese, was assessed through in vitro tests aimed to determine (1) the antibiotic susceptibility profile by broth microdilution, (2) the transferability of antibiotic resistance determinants by filter-mating, and (3) the phenotypic and genotypic stability during serial batch sub-culture (100-day period) by evaluating physiological and probiotic features and RAPD-PCR fingerprinting. Lactobacilli strains exhibited multidrug-resistance; however, resistance determinants were not transferred in the filter-mating assay. Significant (p < 0.05) differences were observed in bacterial morphology and some functional and technological properties when strains were serially sub-cultured over 50 generations (G50), compared to the initial cultures (G0). Conversely, the strains did not show mucinolytic and hemolytic activities either at G0 or after 100 generations (G100). Genetic polymorphism and genomic template instability on selected strains were detected, which suggest possible evolutionary arrangements that may occur when these bacteria are largely cultured. Our findings suggest that the assessed strains did not raise in vitro biosafety concerns; however, complementary studies are still needed to establish the safe potential applications in humans and animals.
Collapse
Affiliation(s)
- Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Alfonso García-Galaz
- Laboratorio de Microbiología Polifásica y Bioactividades, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos‒UNIDA, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Miguel Ángel de Quevedo 2779, Veracruz, Veracruz, México, 91897
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México.
| |
Collapse
|
7
|
Coimbra-Gomes J, Reis PJM, Tavares TG, Faria MA, Malcata FX, Macedo AC. Evaluating the Probiotic Potential of Lactic Acid Bacteria Implicated in Natural Fermentation of Table Olives, cv. Cobrançosa. Molecules 2023; 28:molecules28083285. [PMID: 37110519 PMCID: PMC10142741 DOI: 10.3390/molecules28083285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The probiotic features of Lactiplantibacillus (L.) pentosus and L. paraplantarum strains, endogenous in Cobrançosa table olives from northeast Portugal, were assessed in terms of functional properties and health benefits. Fourteen lactic acid bacteria strains were compared with Lacticaseibacillus casei from a commercial brand of probiotic yoghurt and L. pentosus B281 from Greek probiotic table olives, in attempts to select strains with higher probiotic performances than those references. For functional properties, the i53 and i106 strains, respectively, exhibited: 22.2 ± 2.2% and 23.0 ± 2.2% for Caco-2 cell adhesion capacity; 21.6 ± 7.8% and 21.5 ± 1.4% for hydrophobicity; 93.0 ± 3.0% and 88.5 ± 4.5% for autoaggregation ability by 24 h of incubation; and ability to co-aggregate with selected pathogens-from 29 to 40% to Gram+ (e.g., Staphylococcus aureus ATCC 25923 and Enterococcus faecalis ATCC 29212); and from 16 to 44% for Gram- (e.g., Escherichia coli ATCC 25922 and Salmonella enteritidis ATCC 25928). The strains proved to be resistant (i.e., halo zone ≤14 mm) to some antibiotics (e.g., vancomycin, ofloxacin, and streptomycin), but susceptible (i.e., halo zone ≥ 20 mm) to others (e.g., ampicillin and cephalothin). The strains exhibited health-beneficial enzymatic activity (such as acid phosphatase and naphthol-AS-BI-phosphohydrolase), but not health-harmful enzymatic activity (such as β-glucuronidase and N-acetyl-β-glucosaminidase). Additionally, the antioxidant activity and cholesterol assimilation features, respectively, of the strains were 19.6 ± 2.8% and 77.5 ± 0.5% for i53, and 19.6 ± 1.8% and 72.2 ± 0.9% for i106. This study indicated that the addition of L. pentosus strains i53 and/or i106 to Cobrançosa table olives is likely to enhance the added value of the final product, in view of the associated potential benefits upon human health.
Collapse
Affiliation(s)
- Joana Coimbra-Gomes
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Patrícia J M Reis
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Tânia G Tavares
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Miguel A Faria
- LAQV/REQUIMTE, Laboratory of Food Science and Hydrology/Rede de Química e Tecnologia, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - F Xavier Malcata
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Angela C Macedo
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- UNICES-UMAIA-Research Unit in Management Sciences and Sustainability, University of Maia, Av. Carlos Oliveira Campos, 4475-690 Maia, Portugal
| |
Collapse
|
8
|
Lando V, Valduga NZ, Moroni LS. Functional characterization of Lactobacilli strains with antimicrobial activity against Salmonella spp. and cell viability in fermented dairy product. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Lu Y, Xing S, He L, Li C, Wang X, Zeng X, Dai Y. Characterization, High-Density Fermentation, and the Production of a Directed Vat Set Starter of Lactobacilli Used in the Food Industry: A Review. Foods 2022; 11:3063. [PMID: 36230139 PMCID: PMC9563398 DOI: 10.3390/foods11193063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Lactobacilli have been widely concerned for decades. Bacteria of the genus Lactobacillus have been commonly employed in fermented food to improve the appearance, smell, and taste of food or prolong its shelf-life. They comprise 261 species (by March 2020) that are highly diverse at the phenotypic, ecological, and genotypic levels. Some Lactobacilli strains have been documented to be essential probiotics, which are defined as a group of living microorganisms that are beneficial to the health of the host when ingested in sufficiency. However, the characterization, high-density fermentation, and the production of a directed vat set (DVS) starter of Lactobacilli strains used in the food industry have not been systematically reported. This paper mainly focuses on reviewing Lactobacilli as functional starter cultures in the food industry, including different molecular techniques for identification at the species and strain levels, methods for evaluating Lactobacilli properties, enhancing their performance and improving the cell density of Lactobacilli, and the production techniques of DVS starter of Lactobacilli strains. Moreover, this review further discussed the existing problems and future development prospects of Lactobacilli in the food industry. The viability and stability of Lactobacilli in the food industry and gastrointestinal environment are critical challenges at the industrial scale. The new production equipment and technology of DVS starter of Lactobacilli strains will have the potential for large-scale application, for example, developing low-temperature spray drying, freezing granulation drying, and spray freeze-drying.
Collapse
Affiliation(s)
- Yun Lu
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- Department of Brewing Engineering, Moutai University, Renhuai 564507, China
| | - Shuqi Xing
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yifeng Dai
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
10
|
Comparison on properties between normal and A2 bovine milk fermented using commercial bacteria mixed with/without two probiotics from human milk. Int J Biol Macromol 2022; 216:105-113. [DOI: 10.1016/j.ijbiomac.2022.06.200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022]
|
11
|
Vasiee A, Falah F, Mortazavi SA. Evaluation of probiotic potential of autochthonous lactobacilli strains isolated from Zabuli yellow kashk, an Iranian dairy product. J Appl Microbiol 2022; 133:3201-3214. [PMID: 35957557 DOI: 10.1111/jam.15772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/14/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
AIMS The aim of this study was evaluating the probiotic potential and anti-biofilm activity of five lactobacilli strains which isolated and identified from an Iranian product. METHODS AND RESULTS Five lactobacilli strains which were isolated from Zabuli yellow kashk, were evaluated for the presence of probiotic properties, such as resistance to low pH, resistance to simulated gastrointestinal conditions, bile salt tolerance, hydrophobicity, auto- and co-aggregation. In addition, antimicrobial susceptibility, adherence to Caco-2 cells (human colon cancer cell line), anti-adhesion activity, ability against biofilm formation, and biofilm degradation of mentioned strains against Pseudomonas aeruginosa PTCC 1707 were assessed. All the strains tested showed acceptable characteristics, but Lactiplantibacillus plantarum TW57-4 appeared of particular interest. Some probiotic properties of this strain were similar and in some cases higher than the commercial probiotic strain Lacticaseibacillus rhamnosus GG (standard sample). Cholesterol assimilation and radical-scavenging activity of Lpb. plantarum TW57-4 were70.2 % and 62.3 %, respectively. The adhesion degree of Lpb. plantarum TW57-4 was 10.6 %. Applying competition and inhibition assay, this strain showed 55.3 % and 62.3 % of competition and inhibition activity in adhesion of P. aeruginosa PTCC 1707 to the intestinal cells, respectively. CONCLUSIONS According to the obtained results, it can be concluded that Lpb. plantarum TW57-4 strain can be used as a promising candidate for in-vivo studies with the aim of developing new probiotic starter cultures. SIGNIFICANCE AND IMPACT OF STUDY The present study furthers our understanding of lactobacilli strains behavior after consumption to establish their beneficial effects.
Collapse
Affiliation(s)
- Alireza Vasiee
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Seyed Ali Mortazavi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
12
|
Ben Farhat L, Aissaoui N, Torrijos R, Luz C, Meca G, Abidi F. Correlation between metabolites of lactic acid bacteria isolated from dairy traditional fermented Tunisian products and antifungal and antioxidant activities. J Appl Microbiol 2022; 133:3069-3082. [PMID: 35924966 DOI: 10.1111/jam.15763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022]
Abstract
AIMS The objective of this study is to identify and investigate the antifungal and antioxidant potential of lactic acid bacteria (LAB) isolated from traditional fermented products. METHODS AND RESULTS In this work, a collection of LAB was isolated from traditional fermented products collected in four Tunisian regions. After first screening using the overlay method, seven bacterial strains were retained due to their high antifungal effect. Four strains of Limosilactobacillus fermentum were identified, one strain of Lacticaseibacillus paracasei, one strain of Lacticaseibacillus rhamnosus and one strain of Enterococcus faecium. The antifungal as well as the antioxidant potential of these bacteria were then evaluated. Bacterial strains were effective against six fungal strains with a minimum inhibitory concentrations ranging from 25 to 100 mg/mL and a minimum fungicidal concentrations ranging from 50 to 200 mg/mL. Cell free supernatants of LAB were analyzed by HPLC-DAD and LC-MS-qTOF-MS analysis. Results showed significant production of organic acids as well as several phenolic compounds. Correlation analysis confirmed that PLA and 1,2-Dihydroxybenzene were positively correlated with antifungal potential. The results of the antioxidant activity highlighted an ABTS radical cation scavenging activity ranging from 49% to 57% and a DPPH trapping percentage ranging from 80% to 97%. CONCLUSIONS Therefore, due to these characteristics, identified lactic acid bacteria strains have shown their effectiveness to perform as antifungal and antioxidant agents. SIGNIFICANCE AND IMPACT OF THE STUDY Since microbial contamination is at the root of extensive losses in the food sector, the identified strains or their metabolites can potentially be used as additives to limit microorganism spoilage in food products and increase their shelf life.
Collapse
Affiliation(s)
- Leila Ben Farhat
- University of Carthage, INSAT, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), BP 676, 1080 Cedex, Tunisia.,University of València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
| | - Neyssene Aissaoui
- University of Carthage, INSAT, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), BP 676, 1080 Cedex, Tunisia
| | - Raquel Torrijos
- University of València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
| | - Carlos Luz
- University of València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
| | - Giuseppe Meca
- University of València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, 46100 Burjassot, València, Spain
| | - Ferid Abidi
- University of Carthage, INSAT, Laboratory of Protein Engineering and Bioactive Molecules (LR11ES24), BP 676, 1080 Cedex, Tunisia
| |
Collapse
|
13
|
Tunay RT, Kök Taş T. Verticle transmission of unique bacterial strains from mother to infant via consuming natural kefir. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|