1
|
do Nascimento RDP, Rizzato JS, Polezi G, Boughanem H, Williams NG, Borguini RG, Santiago MCPDA, Marostica Junior MR, Parry L. Myrciaria jaboticaba Fruit Peel: Bioactive Composition as Determined by Distinct Harvest Seasons and In Vitro Anti-Cancer Activity. PLANTS (BASEL, SWITZERLAND) 2024; 13:2907. [PMID: 39458854 PMCID: PMC11510877 DOI: 10.3390/plants13202907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Jaboticaba (Myrciaria jaboticaba) is a recognizable and unique crop from Brazil. The fruit's byproducts are currently being studied, given their bioactive composition and promising anti-cancer potential. It is not evident, however, if different harvesting seasons can modify the chemical profile and antioxidant capacity of jaboticaba fruit fractions. Furthermore, as there is limited data for jaboticaba's anti-proliferative effects, additional assessments are required to improve the robustness of these findings. Therefore, this study aimed to determine the composition of the peel of jaboticaba collected in two periods (May-off-season, sample 1-and August-October-peak season, sample 2) and test the peel's richest anthocyanin sample against colorectal cancer (CRC) cell lines. To accomplish this, proximate, spectrophotometric, and chromatographic analyses were performed in two freeze-dried samples; and anti-proliferative and/or colony-forming assays were carried out in Caco-2, HT29, and HT29-MTX cells. As a result, sample 2 showed the highest levels of polyphenols overall, including flavonoids and anthocyanins. This sample displayed significative higher contents of cyanidin-3-O-glucoside (48%) and delphinidin-3-O-glucoside (105%), in addition to a superior antioxidant capacity (23% higher). Sample 1 showed higher amounts of total protein, gallic acid (20% higher), and specific carotenoids. An aqueous extract from sample 2 was tested against CRC, showing anti-proliferative effects for Caco-2 cells at 1 and 2 mg/mL concentrations, with IC50 values of 1.2-1.3 mg/mL. Additionally, the extract was able to inhibit cell colony formation when tested at both low and high concentrations. In conclusion, jaboticaba collected in the main season stands out regarding its polyphenol composition and holds potential against cancer cell growth.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Laboratório de Nutrição e Metabolismo, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil; (J.S.R.); (G.P.); (M.R.M.J.)
- Prevention and Early Detection Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; (H.B.); (N.G.W.); (L.P.)
| | - Julia Soto Rizzato
- Laboratório de Nutrição e Metabolismo, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil; (J.S.R.); (G.P.); (M.R.M.J.)
| | - Gabriele Polezi
- Laboratório de Nutrição e Metabolismo, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil; (J.S.R.); (G.P.); (M.R.M.J.)
| | - Hatim Boughanem
- Prevention and Early Detection Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; (H.B.); (N.G.W.); (L.P.)
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, 29010 Malaga, Spain
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain
- Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Non Gwenllian Williams
- Prevention and Early Detection Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; (H.B.); (N.G.W.); (L.P.)
| | - Renata Galhardo Borguini
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Agroindustria de Alimentos, Rio de Janeiro 23020-470, RJ, Brazil; (R.G.B.); (M.C.P.d.A.S.)
| | | | - Mario Roberto Marostica Junior
- Laboratório de Nutrição e Metabolismo, Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas 13083-862, SP, Brazil; (J.S.R.); (G.P.); (M.R.M.J.)
| | - Lee Parry
- Prevention and Early Detection Laboratory, European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK; (H.B.); (N.G.W.); (L.P.)
| |
Collapse
|
2
|
Oumeddour DZ, Al-Dalali S, Zhao L, Zhao L, Wang C. Recent advances on cyanidin-3-O-glucoside in preventing obesity-related metabolic disorders: A comprehensive review. Biochem Biophys Res Commun 2024; 729:150344. [PMID: 38976946 DOI: 10.1016/j.bbrc.2024.150344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Anthocyanins, found in various pigmented plants as secondary metabolites, represent a class of dietary polyphenols known for their bioactive properties, demonstrating health-promoting effects against several chronic diseases. Among these, cyanidin-3-O-glucoside (C3G) is one of the most prevalent types of anthocyanins. Upon consumption, C3G undergoes phases I and II metabolism by oral epithelial cells, absorption in the gastric epithelium, and gut transformation (phase II & microbial metabolism), with limited amounts reaching the bloodstream. Obesity, characterized by excessive body fat accumulation, is a global health concern associated with heightened risks of disability, illness, and mortality. This comprehensive review delves into the biodegradation and absorption dynamics of C3G within the gastrointestinal tract. It meticulously examines the latest research findings, drawn from in vitro and in vivo models, presenting evidence underlining C3G's bioactivity. Notably, C3G has demonstrated significant efficacy in combating obesity, by regulating lipid metabolism, specifically decreasing lipid synthesis, increasing fatty acid oxidation, and reducing lipid accumulation. Additionally, C3G enhances energy homeostasis by boosting energy expenditure, promoting the activity of brown adipose tissue, and stimulating mitochondrial biogenesis. Furthermore, C3G shows potential in managing various prevalent obesity-related conditions. These include cardiovascular diseases (CVD) and hypertension through the suppression of reactive oxygen species (ROS) production, enhancement of endogenous antioxidant enzyme levels, and inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway and by exercising its cardioprotective and vascular effects by decreasing pulmonary artery thickness and systolic pressure which enhances vascular relaxation and angiogenesis. Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) are also managed by reducing gluconeogenesis via AMPK pathway activation, promoting autophagy, protecting pancreatic β-cells from oxidative stress and enhancing glucose-stimulated insulin secretion. Additionally, C3G improves insulin sensitivity by upregulating GLUT-1 and GLUT-4 expression and regulating the PI3K/Akt pathway. C3G exhibits anti-inflammatory properties by inhibiting the NF-κB pathway, reducing pro-inflammatory cytokines, and shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. C3G demonstrates antioxidative effects by enhancing the expression of antioxidant enzymes, reducing ROS production, and activating the Nrf2/AMPK signaling pathway. Moreover, these mechanisms also contribute to attenuating inflammatory bowel disease and regulating gut microbiota by decreasing Firmicutes and increasing Bacteroidetes abundance, restoring colon length, and reducing levels of inflammatory cytokines. The therapeutic potential of C3G extends beyond metabolic disorders; it has also been found effective in managing specific cancer types and neurodegenerative disorders. The findings of this research can provide an important reference for future investigations that seek to improve human health through the use of naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Dounya Zad Oumeddour
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Sam Al-Dalali
- School of Food and Health, Guilin Tourism University, Guilin, 541006, China; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb, 70270, Yemen.
| | - Liang Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Lei Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chengtao Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing, 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
3
|
Lamenza FF, Upadhaya P, Roth P, Shrestha S, Jagadeesha S, Horn N, Pracha H, Oghumu S. Berries vs. Disease: Revenge of the Phytochemicals. Pharmaceuticals (Basel) 2024; 17:84. [PMID: 38256917 PMCID: PMC10818490 DOI: 10.3390/ph17010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Secondary metabolites and phytochemicals in plant-based diets are known to possess properties that inhibit the development of several diseases including a variety of cancers of the aerodigestive tract. Berries are currently of high interest to researchers due to their high dietary source of phytochemicals. Black raspberries (BRB), Rubus occidentalis, are of special interest due to their rich and diverse composition of phytochemicals. In this review, we present the most up-to-date preclinical and clinical data involving berries and their phytochemicals in the chemoprevention of a variety of cancers and diseases. BRBs possess a variety of health benefits including anti-proliferative properties, anti-inflammatory activity, activation of pro-cell-death pathways, modulation of the immune response, microbiome modulation, reduction in oxidative stress, and many more. However, little has been done in both preclinical and clinical settings on the effects of BRB administration in combination with other cancer therapies currently available for patients. With the high potential for BRBs as chemopreventive agents, there is a need to investigate their potential in combination with other treatments to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Felipe F. Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Puja Upadhaya
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Peyton Roth
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Suvekshya Shrestha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Sushmitha Jagadeesha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Natalie Horn
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Hasan Pracha
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (F.F.L.); (P.U.); (P.R.); (S.S.); (S.J.); (N.H.); (H.P.)
| |
Collapse
|
4
|
Zhang L, Yao L, Zhao F, Yu A, Zhou Y, Wen Q, Wang J, Zheng T, Chen P. Protein and Peptide-Based Nanotechnology for Enhancing Stability, Bioactivity, and Delivery of Anthocyanins. Adv Healthc Mater 2023; 12:e2300473. [PMID: 37537383 PMCID: PMC11468125 DOI: 10.1002/adhm.202300473] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/18/2023] [Indexed: 08/05/2023]
Abstract
Anthocyanin, a unique natural polyphenol, is abundant in plants and widely utilized in biomedicine, cosmetics, and the food industry due to its excellent antioxidant, anticancer, antiaging, antimicrobial, and anti-inflammatory properties. However, the degradation of anthocyanin in an extreme environment, such as alkali pH, high temperatures, and metal ions, limits its physiochemical stabilities and bioavailabilities. Encapsulation and combining anthocyanin with biomaterials could efficiently stabilize anthocyanin for protection. Promisingly, natural or artificially designed proteins and peptides with favorable stabilities, excellent biocapacity, and wide sources are potential candidates to stabilize anthocyanin. This review focuses on recent progress, strategies, and perspectives on protein and peptide for anthocyanin functionalization and delivery, i.e., formulation technologies, physicochemical stability enhancement, cellular uptake, bioavailabilities, and biological activities development. Interestingly, due to the simplicity and diversity of peptide structure, the interaction mechanisms between peptide and anthocyanin could be illustrated. This work sheds light on the mechanism of protein/peptide-anthocyanin nanoparticle construction and expands on potential applications of anthocyanin in nutrition and biomedicine.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Liang Yao
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Feng Zhao
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Alice Yu
- Schulich School of Medicine and Dentistry, Western University, Ontario, N6A 3K7, Canada
| | - Yueru Zhou
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Qingmei Wen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jun Wang
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Tao Zheng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| |
Collapse
|
5
|
Nascimento RDPD, Machado APDF. The preventive and therapeutic effects of anthocyanins on colorectal cancer: A comprehensive review based on up-to-date experimental studies. Food Res Int 2023; 170:113028. [PMID: 37316089 DOI: 10.1016/j.foodres.2023.113028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/16/2023]
Abstract
Colorectal cancer (CRC) is the second most lethal and the third most diagnosed type of cancer worldwide. More than 75% of CRC cases are sporadic and lifestyle-related. Risk factors include diet, physical inactivity, genetics, smoking, alcohol, changes in the intestinal microbiota, and inflammation-related diseases such as obesity, diabetes, and inflammatory bowel diseases. The limits of conventional treatments (surgery, chemotherapy, radiotherapy), as demonstrated by the side effects and resistance of many CRC patients, are making professionals search for new chemopreventive alternatives. In this context, diets rich in fruits and vegetables or plant-based products, which contain high levels of phytochemicals, have been postulated as complementary therapeutic options. Anthocyanins, phenolic pigments responsible for the vivid colors of most red, purple, and blue fruits and vegetables, have been shown protective effects on CRC. Berries, grapes, Brazilian fruits, and vegetables such as black rice and purple sweet potato are examples of products rich in anthocyanins, which have been able to reduce cancer development by modulating signaling pathways associated with CRC. Therefore, this review has as main objective to present and discuss the potential preventive and therapeutic effects of anthocyanins present in fruits and vegetables, in plant extracts, or in their pure form on CRC, taking into account up-to-date experimental studies (2017-2023). Additionally, a highlight is given towards the mechanisms of action of anthocyanins on CRC.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Laboratory of Nutrition and Metabolism (LANUM), Department of Food Science and Nutrition (DECAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, 13083-862, Campinas, São Paulo, Brazil; European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Rd, CF24 4HQ, Cardiff, Wales, United Kingdom.
| | - Ana Paula da Fonseca Machado
- Study and Research Group on Agroindustrial Products from the Cerrado (GEPPAC), Faculty of Engineering (FAEN), Federal University of Grande Dourados (UFGD), Dourados-Itahum Highway Km 12, 79804-970, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
6
|
Vélez MD, Llano-Ramirez MA, Ramón C, Rojas J, Bedoya C, Arango-Varela S, Santa-González GA, Gil M. Antioxidant capacity and cytotoxic effect of an optimized extract of isabella grape ( Vitis labrusca) on breast cancer cells. Heliyon 2023; 9:e16540. [PMID: 37260897 PMCID: PMC10227348 DOI: 10.1016/j.heliyon.2023.e16540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
The phenolic profile of Isabella grape (Vitis labrusca) offers beneficial properties to human health and makes it a functional food product. In order to better understand the phenolic compounds found in this grape variety and the biological effect they induce on breast cancer cells, an ultrasound-assisted extraction was carried out. During the extraction of polyphenols from Isabella grapes organically grown in Antioquia (Colombia), parameters such as frequency (33 kHz and 40 kHz), time and solvent were optimized to finally obtain a crude extract with antioxidant properties (Oxygen Radical Absorbance Capacity, ORAC: 293.22 ± 34.73 μmol of Trolox/g of sample), associated with a total polyphenol content (TPC) of 43.14 ± 5.00 mg GAE/g sample and a total anthocyanin content composed of 17.69 ± 2.59 mg of malvidin-3-glucoside/100 g of sample. MCF-7 breast cancer cells were treated with different concentrations of the optimized extract, and results show a decrease in cell viability related to mitochondrial membrane depolarization, ROS increase, and chromatin condensation. To determine the possible death induction mechanism, molecular docking was simulated to predict the molecular interactions between the most abundant phenolic compounds in Isabella grape and the main apoptosis-related proteins. The results obtained from in silico and in vitro experiments were consistent with each other, suggesting that the phenolic compounds found in Isabella grape can be considered potential adjuvant chemopreventive agents for the treatment of breast cancer.
Collapse
Affiliation(s)
- M. Daniela Vélez
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - María A. Llano-Ramirez
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Carolina Ramón
- Química Básica, Aplicada y Ambiente Alquimia, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Jessica Rojas
- Didáctica y Modelamiento en Ciencias Exactas y Aplicadas (DAVINCI), Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Carolina Bedoya
- Food Engineering Research Group, Unilasallista Corporación Universitaria, Caldas 055440, Colombia
| | - Sandra Arango-Varela
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Gloria A. Santa-González
- Grupo de Investigación e Innovación Biomédica, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| | - Maritza Gil
- Química Básica, Aplicada y Ambiente Alquimia, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
| |
Collapse
|
7
|
Nascimento RDPD, Rizzato JS, Polezi G, Moya AMTM, Silva MF, Machado APDF, Franchi Junior GC, Borguini RG, Santiago MCPDA, Paiotti APR, Pereira JA, Martinez CAR, Marostica Junior MR. Freeze-dried jaboticaba (Myrciaria jaboticaba (Vell.) O. Berg) peel powder, a rich source of anthocyanins and phenolic acids, mitigates inflammation-driven colorectal cancer in mice. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
8
|
Sirtuin1 (SIRT1) is involved in the anticancer effect of black raspberry anthocyanins in colorectal cancer. Eur J Nutr 2023; 62:395-406. [PMID: 36056948 DOI: 10.1007/s00394-022-02989-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Abnormal acetylation modification is a common epigenetic change in tumorigenesis and is closely related to the progression of colorectal cancer (CRC). Our previous studies have suggested that black raspberry (BRB) anthocyanins have a significant chemopreventive effect against CRC. This study investigated whether protein acetylation plays an important role in BRB anthocyanins-mediated regulation of CRC progression. METHODS We used the AOM-induced CRC mouse model and the CRC cell lines SW480 and Caco-2 to explore the potential role of acetylation of histone H4 and NF-κB signaling pathway-related proteins (non-histone proteins) in the antitumor process mediated by BRB anthocyanins. The expression of related proteins was detected by western blot. ROS level was detected by immunofluorescence. RESULTS BRB anthocyanins affected the acetylation level by down-regulating the expression of Sirtuin1 (SIRT1) and up-regulating the expression of MOF and EP300. The acetylation level of lysine sites on histone H4 (H4K5, H4K12 and H4K16) was increased. Furthermore, following BRB anthocyanins treatment, the expression of ac-p65 was significantly up-regulated and the NF-κB signal pathway was activated, which in turn up-regulated Bax expression and inhibited Bcl-2, cyclin-D1, c-myc and NLRP3 expression to promote CRC cell cycle arrest, apoptosis and relieve inflammation. CONCLUSION The findings suggested that protein acetylation could play a critical role in BRB anthocyanins-regulated CRC development.
Collapse
|
9
|
Advances in Dietary Phenolic Compounds to Improve Chemosensitivity of Anticancer Drugs. Cancers (Basel) 2022; 14:cancers14194573. [PMID: 36230494 PMCID: PMC9558505 DOI: 10.3390/cancers14194573] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Several dietary phenolic compounds isolated from medicinal plants exert significant anticancer effects via several mechanisms. They induce apoptosis, autophagy, telomerase inhibition, and angiogenesis. Certain dietary phenolic compounds increase the effectiveness of drugs used in conventional chemotherapy. Some clinical uses of dietary phenolic compounds for treating certain cancers have shown remarkable therapeutic results, suggesting effective incorporation in anticancer treatments in combination with traditional chemotherapeutic agents. Abstract Despite the significant advances and mechanistic understanding of tumor processes, therapeutic agents against different types of cancer still have a high rate of recurrence associated with the development of resistance by tumor cells. This chemoresistance involves several mechanisms, including the programming of glucose metabolism, mitochondrial damage, and lysosome dysfunction. However, combining several anticancer agents can decrease resistance and increase therapeutic efficacy. Furthermore, this treatment can improve the effectiveness of chemotherapy. This work focuses on the recent advances in using natural bioactive molecules derived from phenolic compounds isolated from medicinal plants to sensitize cancer cells towards chemotherapeutic agents and their application in combination with conventional anticancer drugs. Dietary phenolic compounds such as resveratrol, gallic acid, caffeic acid, rosmarinic acid, sinapic acid, and curcumin exhibit remarkable anticancer activities through sub-cellular, cellular, and molecular mechanisms. These compounds have recently revealed their capacity to increase the sensitivity of different human cancers to the used chemotherapeutic drugs. Moreover, they can increase the effectiveness and improve the therapeutic index of some used chemotherapeutic agents. The involved mechanisms are complex and stochastic, and involve different signaling pathways in cancer checkpoints, including reactive oxygen species signaling pathways in mitochondria, autophagy-related pathways, proteasome oncogene degradation, and epigenetic perturbations.
Collapse
|
10
|
Talib WH, Awajan D, Hamed RA, Azzam AO, Mahmod AI, AL-Yasari IH. Combination Anticancer Therapies Using Selected Phytochemicals. Molecules 2022; 27:5452. [PMID: 36080219 PMCID: PMC9458090 DOI: 10.3390/molecules27175452] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is still one of the most widespread diseases globally, it is considered a vital health challenge worldwide and one of the main barriers to long life expectancy. Due to the potential toxicity and lack of selectivity of conventional chemotherapeutic agents, discovering alternative treatments is a top priority. Plant-derived natural products have high potential in cancer treatment due to their multiple mechanisms of action, diversity in structure, availability in nature, and relatively low toxicity. In this review, the anticancer mechanisms of the most common phytochemicals were analyzed. Furthermore, a detailed discussion of the anticancer effect of combinations consisting of natural product or natural products with chemotherapeutic drugs was provided. This review should provide a strong platform for researchers and clinicians to improve basic and clinical research in the development of alternative anticancer medicines.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Aya O. Azzam
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Intisar Hadi AL-Yasari
- Department of Genetic Engineering, College of Biotechnology, Al-Qasim Green University, Babylon 964, Iraq
| |
Collapse
|
11
|
Behrendt I, Röder I, Will F, Mostafa H, Gonzalez-Dominguez R, Meroño T, Andres-Lacueva C, Fasshauer M, Rudloff S, Kuntz S. Influence of Plasma-Isolated Anthocyanins and Their Metabolites on Cancer Cell Migration (HT-29 and Caco-2) In Vitro: Results of the ATTACH Study. Antioxidants (Basel) 2022; 11:antiox11071341. [PMID: 35883834 PMCID: PMC9311669 DOI: 10.3390/antiox11071341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer mortality is mainly due to metastasis. Therefore, searching for new therapeutic agents suppressing cancer cell migration is crucial. Data from human studies regarding effects of anthocyanins on cancer progression, however, are scarce and it is unclear whether physiological concentrations of anthocyanins and their metabolites reduce cancer cell migration in vivo. In addition, interactions with chemotherapeutics like 5-fluorouracil (5-FU) are largely unknown. Thus, we combined a placebo-controlled, double-blinded, cross-over study with in vitro migration studies of colon cancer cell lines to examine the anti-migratory effects of plasma-isolated anthocyanins and their metabolites (PAM). Healthy volunteers (n = 35) daily consumed 0.33 L of an anthocyanin-rich grape/bilberry juice and an anthocyanin-depleted placebo juice for 28 days. PAM were isolated before and after intervention by solid-phase extraction. HT-29 and Caco-2 cells were incubated with PAM in a Boyden chamber. Migration of HT-29 cells was significantly inhibited by PAM from juice but not from placebo. In contrast, Caco-2 migration was not affected. Co-incubation with 5-FU and pooled PAM from volunteers (n = 10), which most effectively inhibited HT-29 migration, further reduced HT-29 migration in comparison to 5-FU alone. Therefore, PAM at physiological concentrations impairs colon cancer cell migration and may support the effectiveness of chemotherapeutics.
Collapse
Affiliation(s)
- Inken Behrendt
- Department of Nutritional Science, Human Nutrition, Justus-Liebig-University, 35390 Giessen, Germany; (M.F.); (S.K.)
- Correspondence:
| | - Isabella Röder
- Department of Beverage Research, Hochschule Geisenheim University, 65366 Geisenheim, Germany; (I.R.); (F.W.)
| | - Frank Will
- Department of Beverage Research, Hochschule Geisenheim University, 65366 Geisenheim, Germany; (I.R.); (F.W.)
| | - Hamza Mostafa
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (H.M.); (R.G.-D.); (T.M.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Raúl Gonzalez-Dominguez
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (H.M.); (R.G.-D.); (T.M.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Tomás Meroño
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (H.M.); (R.G.-D.); (T.M.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, Food Innovation Network (XIA), Nutrition and Food Safety Research Institute (INSA), Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (H.M.); (R.G.-D.); (T.M.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mathias Fasshauer
- Department of Nutritional Science, Human Nutrition, Justus-Liebig-University, 35390 Giessen, Germany; (M.F.); (S.K.)
| | - Silvia Rudloff
- Department of Nutritional Science and Department of Pediatrics, Justus-Liebig-University, 35392 Giessen, Germany;
| | - Sabine Kuntz
- Department of Nutritional Science, Human Nutrition, Justus-Liebig-University, 35390 Giessen, Germany; (M.F.); (S.K.)
| |
Collapse
|
12
|
Liao Z, Zhang X, Chen X, Battino M, Giampieri F, Bai W, Tian L. Recovery of value-added anthocyanins from mulberry by a cation exchange chromatography. Curr Res Food Sci 2022; 5:1445-1451. [PMID: 36119370 PMCID: PMC9475210 DOI: 10.1016/j.crfs.2022.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Anthocyanins are often targets in polyphenol analysis. However, it's hard to effectively separate anthocyanin from copigments such as phenolic acid and flavanols due to their similar structure. Thus, a cation exchange chromatography with 001 × 7 has been developed, which is available for anthocyanins isolation both on a small and large scale. The optimal process condition of anthocyanins isolation was determined. Compared to the macroporous adsorbent resins and Strong Cation Exchange resin (SCX), 001X7 shows greater economic advantages in large-scale purification of anthocyanins. More than 95% purity of the anthocyanin fraction can be achieved through this approach. This method shows a path to provide large quantities of copigments-free anthocyanins from mulberry polyphenols for the further study of its biological effects and may be extended to other analytical methods of polyphenol isolation from other plant materials. An economic cation-exchange resin 001X7 was used for anthocyanins purification. Large-scale separation of anthocyanins and copigments was achieved by resin 001X7. The separation condition was optimized and the purity of anthocyanins reached 95%. The cation resin 001X7 is cost-effective and has industrial application potential.
Collapse
Affiliation(s)
- Zhiwei Liao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Xuan Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| | - Xi Chen
- Key Laboratory of Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea Del Atlántico, 39011, Santander, Spain
| | - Francesca Giampieri
- Department of Clinical Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea Del Atlántico, 39011, Santander, Spain
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
- Corresponding author.
| | - Lingmin Tian
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou, China
| |
Collapse
|