1
|
Chahat, Nainwal N, Murti Y, Yadav S, Rawat P, Dhiman S, Kumar B. Advancements in targeting tumor suppressor genes (p53 and BRCA 1/2) in breast cancer therapy. Mol Divers 2024:10.1007/s11030-024-10964-z. [PMID: 39152355 DOI: 10.1007/s11030-024-10964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Globally, among numerous cancer subtypes, breast cancer (BC) is one of the most prevalent forms of cancer affecting the female population. A female's family history significantly increases her risk of developing breast cancer. BC is caused by aberrant breast cells that proliferate and develop into tumors. It is estimated that 5-10% of breast carcinomas are inherited and involve genetic mutations that ensure the survival and prognosis of breast cancer cells. The most common genetic variations are responsible for hereditary breast cancer but are not limited to p53, BRCA1, and BRCA2. BRCA1 and BRCA2 are involved in genomic recombination, cell cycle monitoring, programmed cell death, and transcriptional regulation. When BRCA1 and 2 genetic variations are present in breast carcinoma, p53 irregularities become more prevalent. Both BRCA1/2 and p53 genes are involved in cell cycle monitoring. The present article discusses the current status of breast cancer research, spotlighting the tumor suppressor genes (BRCA1/2 and p53) along with structural activity relationship studies, FDA-approved drugs, and several therapy modalities for treating BC. Breast cancer drugs, accessible today in the market, have different side effects including anemia, pneumonitis, nausea, lethargy, and vomiting. Thus, the development of novel p53 and BRCA1/2 inhibitors with minimal possible side effects is crucial. We have covered compounds that have been examined subsequently (2020 onwards) in this overview which may be utilized as lead compounds. Further, we have covered mechanistic pathways to showcase the critical druggable targets and clinical and post-clinical drugs targeting them for their utility in BC.
Collapse
Affiliation(s)
- Chahat
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, 246174, Uttarakhand, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premanagar, Dehradun, 248007, Uttarakhand, India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Savita Yadav
- IES Institute of Technology and Management, IES University, Bhopal, 462044, Madhya Pradesh, India
| | - Pramod Rawat
- Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
- Graphic Era Hill University Clement Town, Dehradun, 248002, India
| | - Sonia Dhiman
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, 246174, Uttarakhand, India.
| |
Collapse
|
2
|
Kozłowska J, Duda-Madej A, Baczyńska D. Antiproliferative Activity and Impact on Human Gut Microbiota of New O-Alkyl Derivatives of Naringenin and Their Oximes. Int J Mol Sci 2023; 24:9856. [PMCID: PMC10298275 DOI: 10.3390/ijms24129856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Naringenin is a 5,7,4′-trihydroxyflavanone naturally occurring mainly in citrus fruits, characterized by a wide spectrum of biological activity. Chemical modifications based on alkylation and oximation in most cases increase its bioactivity. The aim of our research was to evaluate the antiproliferative activity and influence on selected representatives of the human gut microbiota of new synthesized O-alkyl derivatives (A1–A10) and their oximes (B1–B10), which contain hexyl, heptyl, octyl, nonyl and undecyl chains attached to the C-7 or to both the C-7 and C-4′ positions in naringenin. To the best of our knowledge, compounds A3, A4, A6, A8–A10 and B3–B10 have not been described in the scientific literature previously. The anticancer activity was tested on human colon cancer cell line HT-29 and mouse embryo fibroblasts 3T3-L1 using the sulforhodamine B (SRB) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays. We also determined the impacts of all compounds on the growth of Gram-positive and Gram-negative bacterial strains, such as Staphylococcus aureus, Enterococcus faecalis and Escherichia coli. The antimicrobial activity was expressed in terms of minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) values. For 7,4′-di-O-hexylnaringenin (A2), 7-O-undecylnaringenin (A9) and their oximes (B2, B9), which were safe for microbiota (MIC > 512 µg/mL) and almost all characterized by high cytotoxicity against the HT-29 cell line (A2: IC50 > 100 µg/mL; A9: IC50 = 17.85 ± 0.65 µg/mL; B2: IC50 = 49.76 ± 1.63 µg/mL; B9: IC50 = 11.42 ± 1.17 µg/mL), apoptosis assays were performed to elucidate their mechanisms of action. Based on our results, new compound B9 induced an apoptotic process via caspase 3/7 activation, which proved its potential as an anticancer agent.
Collapse
Affiliation(s)
- Joanna Kozłowska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland;
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy with Division of Laboratory Diagnostics, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland;
| |
Collapse
|
3
|
Chahat, Bhatia R, Kumar B. p53 as a potential target for treatment of cancer: A perspective on recent advancements in small molecules with structural insights and SAR studies. Eur J Med Chem 2023; 247:115020. [PMID: 36543034 DOI: 10.1016/j.ejmech.2022.115020] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Cancer represents one of the world's biggest hazardous diseases. p53 is the uttermost researched tumour suppressor protein. It is commonly considered the "guardian of the genome," performing a critical function in genetic stability maintenance through controlling the cell cycle, programmed cell death, DNA repair, aging, and angiogenesis. The abnormalities in p53 lead to genetic instability and plays a significant role in carcinogenesis. The role of p53 in tumour suppression is emphasized in addition by the observation that primary silencing with this protein occurred in more than 50% of cancers. MDM2, p53, and the p53-MDM2 connections are well-known targets for the prevention and treatment of cancer. Moreover, in tumors with wild-type p53, their efficacy is decreased due to MDM2 enlargement or by the gradual decrease of MDM2 blocker ARF. As a result, improving p53 activity in cancerous cells provides a promising anticancer strategy. Various techniques are now being investigated, and addressing the p53-MDM2 interaction had also evolved as a potentially feasible strategy for contending with tumors. Both p53 and MDM2, interact via an autoregulation response signal: p53 activity induces MDM2 transcription, which in response interacts with p53's N-terminal transactivation domain, inhibiting its transcriptional activity. This article provides information on the current scenario of anti-tumor activities, with a particular emphasis on structure-activity relationship characteristics (SAR) against the p53-MDM2 to treat cancer. The primary purpose of this review is to cover recent advancements in the creation and testing of anticancer drugs that target the p53-MDM2 structure. This review contains different heterocyclic moieties which show significant results toward cancer. A mechanistic route is shown here, demonstrating both normal and malignant conditions via several stressed factors. Several compounds entered clinical trials as p53-MDM2 inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Chahat
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road MOGA, 142001, Punjab, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road MOGA, 142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Srinagar, Garhwal, Uttarakhand, 246174, India.
| |
Collapse
|
4
|
Motallebi M, Bhia M, Rajani HF, Bhia I, Tabarraei H, Mohammadkhani N, Pereira-Silva M, Kasaii MS, Nouri-Majd S, Mueller AL, Veiga FJB, Paiva-Santos AC, Shakibaei M. Naringenin: A potential flavonoid phytochemical for cancer therapy. Life Sci 2022; 305:120752. [PMID: 35779626 DOI: 10.1016/j.lfs.2022.120752] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Naringenin is an important phytochemical which belongs to the flavanone group of polyphenols, and is found mainly in citrus fruits like grapefruits and others such as tomatoes and cherries plus medicinal plants derived food. Available evidence demonstrates that naringenin, as herbal medicine, has important pharmacological properties, including anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, and anti-cancer activities. Collected data from in vitro and in vivo studies show the inactivation of carcinogens after treatment with pure naringenin, naringenin-loaded nanoparticles, and also naringenin in combination with anti-cancer agents in various malignancies, such as colon cancer, lung neoplasms, breast cancer, leukemia and lymphoma, pancreatic cancer, prostate tumors, oral squamous cell carcinoma, liver cancer, brain tumors, skin cancer, cervical and ovarian cancer, bladder neoplasms, gastric cancer, and osteosarcoma. Naringenin inhibits cancer progression through multiple mechanisms, like apoptosis induction, cell cycle arrest, angiogenesis hindrance, and modification of various signaling pathways including Wnt/β-catenin, PI3K/Akt, NF-ĸB, and TGF-β pathways. In this review, we demonstrate that naringenin is a natural product with potential for the treatment of different types of cancer, whether it is used alone, in combination with other agents, or in the form of the naringenin-loaded nanocarrier, after proper technological encapsulation.
Collapse
Affiliation(s)
- Mahzad Motallebi
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran; Department of Biology, Yadegar-e-Imam Khomeini Shahr-e-Rey Branch, Islamic Azad University, Tehran 1815163111, Iran
| | - Mohammed Bhia
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran; Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| | - Huda Fatima Rajani
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E0T5, Canada
| | - Iman Bhia
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Hadi Tabarraei
- Department of Veterinary Biomedical Science, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon SKS7N 5B4, Canada
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maryam Sadat Kasaii
- Department of Nutrition Research, Department of Community Nutrition, National Nutrition and Food Technology Research Institute (WHO Collaborating Center); and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Saeedeh Nouri-Majd
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 14155-6117, Iran
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Francisco J B Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336 Munich, Germany.
| |
Collapse
|