1
|
Fu Y, Wang C, Gao Z, Liao Y, Peng M, Fu F, Li G, Su D, Guo J, Shan Y. Microbes: Drivers of Chenpi manufacturing, biotransformation, and physiological effects. Food Chem 2025; 464:141631. [PMID: 39454433 DOI: 10.1016/j.foodchem.2024.141631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/16/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Chenpi holds a rich history of both edible and medicinal applications worldwide, garnering increased attention from researchers in recent years due to its diverse physiological effects. While current research predominantly exploresed its chemical composition and physiological effects, there remains a notable gap in knowledge concerning its manufacturing, characteristic chemical substances, and the underlying mechanisms driving its physiological effects. In this review, the impacts of microbes on the manufacturing, biotransformation, and physiological effects of Chenpi were summarized, as well as the present status of product development. Furthermore, this review engaged in an in-depth discussion highlighting the challenges and shortcomings in recent research, while proposing potential directions and prospects. Additionally, the claim that "The longer the aging, the better the quality" of Chenpi was scientifically evaluated for the first time, providing a solid theoretical foundation for advancing the Chenpi industry.
Collapse
Affiliation(s)
- Yanjiao Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Chao Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhipeng Gao
- Fisheries College, Hunan Agricultural University, Changsha 410128, China
| | - Yanfang Liao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Mingfang Peng
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Fuhua Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Gaoyang Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Donglin Su
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
2
|
Chen P, Chen F, Hou T, Hu X, Xia C, Zhang J, Shen S, Li C, Li K. Administration time modify the anxiolytic and antidepressant effects of inulin via gut-brain axis. Int J Biol Macromol 2024; 288:138698. [PMID: 39672439 DOI: 10.1016/j.ijbiomac.2024.138698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
An imbalance in the microbiota-gut-brain axis exerts an essential effect on the pathophysiology of depressive and anxiety disorders. Our previous research revealed that the timing of inulin administration altered its effects on chronic unpredictable mild stress (CUMS)-induced anxiety and depression. However, it is still unclear if the gut-brain axis is primarily responsible for these effects. In this study, fecal microbiota transplantation (FMT) confirmed that inulin administration at different times alleviated CUMS-induced anxiety- and depression-like behaviors via the gut-brain axis. The time of administration seemed to modify the anxiolytic and antidepressant effects of inulin, and inulin intervention in the evening was more pronounced in inhibiting the inflammatory responses than that of morning inulin intervention. Serum metabolomics analysis showed that the main differential metabolites, including fenofibric acid, 4'-Hydroxyfenoprofen glucuronide and 5-(4-Hydroxybenzyl)thiazolidine-2,4-dione may be vital for the anxiolytic and antidepressant effects of different inulin treatment times. Our results suggested that inulin administration in the evening was more effective in alleviating the inflammatory responses and improving amino acids metabolism. This study provides a new potential link between the microbiota-gut-brain axis and chrono-nutrition, demonstrating that a more appropriate administration time results in a better intervention effect.
Collapse
Affiliation(s)
- Ping Chen
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Fanyang Chen
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Hou
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueqin Hu
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenxing Xia
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaming Zhang
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Shanshan Shen
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Chunmei Li
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaikai Li
- College of Food Science and Technology, Key Laboratory of Environment Correlative Food Science, Huazhong Agricultural University, Wuhan 430070, China..
| |
Collapse
|
3
|
Sivri D, Şeref B, Şare Bulut M, Gezmen Karadağ M. Evaluation of the Effect of Probiotic Supplementation on Intestinal Barrier Integrity and Epithelial Damage in Colitis Disease: A Systematic Review. Nutr Rev 2024:nuae180. [PMID: 39602817 DOI: 10.1093/nutrit/nuae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
CONTEXT Previous reviews have focused on the effects of probiotics on colitis, but there is a need to understand their impact on barrier integrity and tight junction protein improvement in colitis. OBJECTIVE This study aimed to systematically examine the effects of probiotic use on barrier integrity in colitis disease. This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. DATA SOURCES A systematic search in PubMed, Web of Science, Scopus, and Cochrane databases identified 2537 articles. DATA EXTRACTION As a result of the search, 2537 articles were accessed. Study results were summarized descriptively through discussions by intervention conditions, study population, measurement methods, and key findings. The included studies were independently reviewed and all authors reached consensus on the quality and major findings from the included articles. Forty-six studies that met the inclusion criteria were analyzed within the scope of the systematic review. RESULTS Although the study primarily utilized probiotics from the Lactobacillaceae family (notably, L casei, L reuteri, L rhamnosus, L plantarum, and L pentosus) and the Bifidobacteriaceae family (notably, B breve, B animalis, and B dentium), other probiotics also demonstrated positive effects on tight junction proteins. These effects are attributed to the production of bioactive and metabolic compounds, as well as short-chain fatty acids, which combat pathogens and reduce anti-inflammatory agents. However, it was observed that the effects of these probiotics on tight junction proteins varied depending on the strain and dose. CONCLUSION The beneficial effects of probiotics on remission in inflammatory bowel disease are well documented. Studies show that probiotics generally improve intestinal barrier function, but factors such as dose, duration, and bacterial species combinations need further clarification. Additionally, comprehensive studies are needed to understand how improved barrier function affects absorption in individuals. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023452774.
Collapse
Affiliation(s)
- Dilek Sivri
- Department of Nutrition and Dietetics, Anadolu University, Eskişehir, Türkiye
| | - Betül Şeref
- Department of Nutrition and Dietetics, Karamanoğlu Mehmetbey University, Karaman, Türkiye
| | - Melike Şare Bulut
- Department of Nutrition and Dietetics, Biruni University, Istanbul, Türkiye
| | | |
Collapse
|
4
|
Bendinelli P, De Noni I, Cattaneo S, Silvetti T, Brasca M, Piazzalunga F, Donetti E, Ferraretto A. Surface layer proteins from Lactobacillus helveticus ATCC® 15009™ affect the gut barrier morphology and function. Tissue Barriers 2024; 12:2289838. [PMID: 38059583 PMCID: PMC11583618 DOI: 10.1080/21688370.2023.2289838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
Paraprobiotics and postbiotics represent a valid alternative to probiotic strains for ameliorating and preserving a healthy intestinal epithelial barrier (IEB). The present study investigated the effects of surface layer proteins (S-layer) of the dairy strain Lactobacillus helveticus ATCC® 15009™ (Lb ATCC® 15009™), as paraprobiotic, on the morpho-functional modulation of IEB in comparison to live or heat-inactivated Lb ATCC® 15009™ in an in vitro co-culture of Caco-2/HT-29 70/30 cells. Live or heat-inactivated Lb ATCC® 15009™ negatively affected transepithelial electrical resistance (TEER) and paracellular permeability, and impaired the distribution of Claudin-1, a tight junction (TJ) transmembrane protein, as detected by immunofluorescence (IF). Conversely, the addition of the S-layer improved TEER and decreased permeability in physiological conditions in co-cultures with basal TEER lower than 50 ohmcm2, indicative of a more permeable physiological IEB known as leaky gut. Transmission electron microscopy (TEM) and IF analyses suggested that the S-layer induces a structural TJ rearrangement and desmosomes' formation. S-layer also restored TEER and permeability in the presence of LPS, but not of a mixture of pro-inflammatory cytokines (TNF-α plus IFN-γ). IF analyses showed an increase in Claudin-1 staining when LPS and S-layer were co-administered with respect to LPS alone; in addition, the S-layer counteracted the reduction of alkaline phosphatase detoxification activity and the enhancement of pro-inflammatory interleukin-8 release both induced by LPS. Altogether, these data corroborate a paraprobiotic role of S-layer from Lb ATCC® 15009™ as a possible candidate for therapeutic and prophylactic uses in conditions related to gastrointestinal health and correlated with extra-intestinal disorders.
Collapse
Affiliation(s)
- Paola Bendinelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Ivano De Noni
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Stefano Cattaneo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Tiziana Silvetti
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Milan, Italy
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Milan, Italy
| | | | - Elena Donetti
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Anita Ferraretto
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Galeazzi-Sant’Ambrogio, Milan, Italy
| |
Collapse
|
5
|
Liu D, Li C, Cao T, Lv X, Yue Y, Li S, Cheng Y, Liu F, Huo G, Li B. Bifidobacterium longum K5 Prevents Enterohaemorrhagic Escherichia coli O157:H7 Infection in Mice through the Modulation of the Gut Microbiota. Nutrients 2024; 16:1164. [PMID: 38674854 PMCID: PMC11053520 DOI: 10.3390/nu16081164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is a commonly encountered foodborne pathogen that can cause hemorrhagic enteritis and lead to hemolytic uremic syndrome (HUS) in severe cases. Bifidobacterium is a beneficial bacterium that naturally exists in the human gut and plays a vital role in maintaining a healthy balance in the gut microbiota. This study investigated the protective effects of B. longum K5 in a mouse model of EHEC O157:H7 infection. The results indicated that pretreatment with B. longum K5 mitigated the clinical symptoms of EHEC O157:H7 infection and attenuated the increase in myeloperoxidase (MPO) activity in the colon of the mice. In comparison to the model group, elevated serum D-lactic acid concentrations and diamine oxidase (DAO) levels were prevented in the K5-EHEC group of mice. The reduced mRNA expression of tight junction proteins (ZO-1, Occludin, and Claudin-1) and mucin MUC2, as well as the elevated expression of virulence factors Stx1A and Stx2A, was alleviated in the colon of both the K5-PBS and K5-EHEC groups. Additionally, the increase in the inflammatory cytokine levels of TNF-α and IL-1β was inhibited and the production of IL-4 and IL-10 was promoted in the K5-EHEC group compared with the model group. B. longum K5 significantly prevented the reduction in the abundance and diversity of mouse gut microorganisms induced by EHEC O157:H7 infection, including blocking the decrease in the relative abundance of Roseburia, Lactobacillus, and Oscillibacter. Meanwhile, the intervention with B. longum K5 promoted the production of acetic acid and butyric acid in the gut. This study provides insights into the use of B. longum K5 for developing probiotic formulations to prevent intestinal diseases caused by pathogenic bacterial infections.
Collapse
Affiliation(s)
- Deyu Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (D.L.); (C.L.); (T.C.); (X.L.); (Y.Y.); (S.L.); (Y.C.); (F.L.); (B.L.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Chunyan Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (D.L.); (C.L.); (T.C.); (X.L.); (Y.Y.); (S.L.); (Y.C.); (F.L.); (B.L.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Ting Cao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (D.L.); (C.L.); (T.C.); (X.L.); (Y.Y.); (S.L.); (Y.C.); (F.L.); (B.L.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Xiuli Lv
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (D.L.); (C.L.); (T.C.); (X.L.); (Y.Y.); (S.L.); (Y.C.); (F.L.); (B.L.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yingxue Yue
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (D.L.); (C.L.); (T.C.); (X.L.); (Y.Y.); (S.L.); (Y.C.); (F.L.); (B.L.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Shuang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (D.L.); (C.L.); (T.C.); (X.L.); (Y.Y.); (S.L.); (Y.C.); (F.L.); (B.L.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yang Cheng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (D.L.); (C.L.); (T.C.); (X.L.); (Y.Y.); (S.L.); (Y.C.); (F.L.); (B.L.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (D.L.); (C.L.); (T.C.); (X.L.); (Y.Y.); (S.L.); (Y.C.); (F.L.); (B.L.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (D.L.); (C.L.); (T.C.); (X.L.); (Y.Y.); (S.L.); (Y.C.); (F.L.); (B.L.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (D.L.); (C.L.); (T.C.); (X.L.); (Y.Y.); (S.L.); (Y.C.); (F.L.); (B.L.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Tang J, Zhao M, Miao X, Chen H, Zhao B, Wang Y, Guo Y, Wang T, Cheng X, Ruan H, Zhang J. Bifidobacterium longum GL001 alleviates rat intestinal ischemia-reperfusion injury by modulating gut microbiota composition and intestinal tissue metabolism. Food Funct 2024; 15:3653-3668. [PMID: 38487897 DOI: 10.1039/d3fo03669c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Intestinal ischemia-reperfusion (IIR) injury leads to inflammation and oxidative stress, resulting in intestinal barrier damage. Probiotics, due to their anti-inflammatory and antioxidant properties, are considered for potential intervention to protect the intestinal barrier during IIR injury. Bifidobacterium longum, a recognized probiotic, has targeted effects on IIR injury, but its mechanisms of action are not yet understood. To investigate the mechanism of Bifidobacterium longum intervention in IIR injury, we conducted a study using a rat IIR injury model. The results showed that Bifidobacterium longum could alleviate inflammation and oxidative stress induced by IIR injury by suppressing the NF-κB inflammatory pathway and activating the Keap1/Nrf2 signaling pathway. Bifidobacterium longum GL001 also increased the abundance of the gut microbiota such as Oscillospira, Ouminococcus, Corynebacterium, Lactobacillus, and Akkermansia, while decreasing the abundance of Allobaculum, [Prevotella], Bacteroidaceae, Bacteroides, Shigella, and Helicobacter. In addition, Bifidobacterium longum GL001 reversed the changes in amino acids and bile acids induced by IIR injury and reduced the levels of DL-cysteine, an oxidative stress marker, in intestinal tissue. Spearman correlation analysis showed that L-cystine was positively correlated with Lactobacillus and negatively correlated with Shigella, while DL-proline was positively correlated with Akkermansia. Moreover, bile acids, cholic acid and lithocholic acid, were negatively correlated with Lactobacillus and positively correlated with Shigella. Therefore, Bifidobacterium longum GL001 may alleviate IIR injury by regulating the gut microbiota to modulate intestinal lipid peroxidation and bile acid metabolism.
Collapse
Affiliation(s)
- Jilang Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Mingchao Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Xue Miao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Hong Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Binger Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Yingying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Yingchao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Tiantian Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Xin Cheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Hongri Ruan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| | - Jiantao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, China
| |
Collapse
|
7
|
Schreiber F, Balas I, Robinson MJ, Bakdash G. Border Control: The Role of the Microbiome in Regulating Epithelial Barrier Function. Cells 2024; 13:477. [PMID: 38534321 PMCID: PMC10969408 DOI: 10.3390/cells13060477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024] Open
Abstract
The gut mucosal epithelium is one of the largest organs in the body and plays a critical role in regulating the crosstalk between the resident microbiome and the host. To this effect, the tight control of what is permitted through this barrier is of high importance. There should be restricted passage of harmful microorganisms and antigens while at the same time allowing the absorption of nutrients and water. An increased gut permeability, or "leaky gut", has been associated with a variety of diseases ranging from infections, metabolic diseases, and inflammatory and autoimmune diseases to neurological conditions. Several factors can affect gut permeability, including cytokines, dietary components, and the gut microbiome. Here, we discuss how the gut microbiome impacts the permeability of the gut epithelial barrier and how this can be harnessed for therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | - Ghaith Bakdash
- Microbiotica Ltd., Cambridge CB10 1XL, UK; (F.S.); (I.B.); (M.J.R.)
| |
Collapse
|
8
|
Zuo WF, Pang Q, Yao LP, Zhang Y, Peng C, Huang W, Han B. Gut microbiota: A magical multifunctional target regulated by medicine food homology species. J Adv Res 2023; 52:151-170. [PMID: 37269937 PMCID: PMC10555941 DOI: 10.1016/j.jare.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND The relationship between gut microbiota and human health has gradually been recognized. Increasing studies show that the disorder of gut microbiota is related to the occurrence and development of many diseases. Metabolites produced by the gut microbiota are responsible for their extensive regulatory roles. In addition, naturally derived medicine food homology species with low toxicity and high efficiency have been clearly defined owing to their outstanding physiological and pharmacological properties in disease prevention and treatment. AIM OF REVIEW Based on supporting evidence, the current review summarizes the representative work of medicine food homology species targeting the gut microbiota to regulate host pathophysiology and discusses the challenges and prospects in this field. It aims to facilitate the understanding of the relationship among medicine food homology species, gut microbiota, and human health and further stimulate the advancement of more relevant research. KEY SCIENTIFIC CONCEPTS OF REVIEW As this review reveals, from the initial practical application to more mechanism studies, the relationship among medicine food homology species, gut microbiota, and human health has evolved into an irrefutable interaction. On the one hand, through affecting the population structure, metabolism, and function of gut microbiota, medicine food homology species maintain the homeostasis of the intestinal microenvironment and human health by affecting the population structure, metabolism, and function of gut microbiota. On the other hand, the gut microbiota is also involved in the bioconversion of the active ingredients from medicine food homology species and thus influences their physiological and pharmacological properties.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lai-Ping Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Ramedani N, Seidita A, Asri N, Azimirad M, Yadegar A, Jahani-Sherafat S, Sharifan A, Mansueto P, Carroccio A, Rostami-Nejad M. The Gliadin Hydrolysis Capacity of B. longum, L. acidophilus, and L. plantarum and Their Protective Effects on Caco-2 Cells against Gliadin-Induced Inflammatory Responses. Nutrients 2023; 15:2769. [PMID: 37375673 DOI: 10.3390/nu15122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Non-celiac wheat sensitivity (NCWS) is a poorly understood gluten-related disorder (GRD) and its prominent symptoms can be ameliorated by gluten avoidance. This study aimed to determine the effectiveness of a probiotic mixture in hydrolyzing gliadin peptides (toxic components of gluten) and suppressing gliadin-induced inflammatory responses in Caco-2 cells. METHODS Wheat dough was fermented with a probiotic mix for 0, 2, 4, and 6 h. The effect of the probiotic mix on gliadin degradation was monitored by SDS-PAGE. The expression levels of IL-6, IL-17A, INF-γ, IL-10, and TGF-β were evaluated using ELISA and qRT-PCR methods. RESULTS According to our findings, fermenting wheat dough with a mix of B. longum, L. acidophilus, and L. plantarum for 6 h was effective in gliadin degradation. This process also reduced levels of IL-6 (p = 0.004), IL-17A (p = 0.004), and IFN-γ (p = 0.01) mRNA, as well as decreased IL-6 (p = 0.006) and IFN-γ (p = 0.0009) protein secretion. 4 h fermentation led to a significant decrease in IL-17A (p = 0.001) and IFN-γ (p = 0.003) mRNA, as well as reduced levels of IL-6 (p = 0.002) and IFN-γ (p < 0.0001) protein secretion. This process was also observed to increase the expression levels of IL-10 (p < 0.0001) and TGF-β (p < 0.0001) mRNA. CONCLUSIONS 4 h fermentation of wheat flour with the proposed probiotic mix might be a good strategy to develop an affordable gluten-free wheat dough for NCWS and probably other GRD patients.
Collapse
Affiliation(s)
- Najmeh Ramedani
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran 9311634719, Iran
| | - Aurelio Seidita
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Nastaran Asri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran
| | - Somayeh Jahani-Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1416634793, Iran
| | - Anousheh Sharifan
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran 9311634719, Iran
| | - Pasquale Mansueto
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Antonio Carroccio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran
| |
Collapse
|
10
|
di Vito R, Conte C, Traina G. A Multi-Strain Probiotic Formulation Improves Intestinal Barrier Function by the Modulation of Tight and Adherent Junction Proteins. Cells 2022; 11:cells11162617. [PMID: 36010692 PMCID: PMC9406415 DOI: 10.3390/cells11162617] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
In healthy individuals, tight junction proteins (TJPs) maintain the integrity of the intestinal barrier. Dysbiosis and increased intestinal permeability are observed in several diseases, such as inflammatory bowel disease. Many studies highlight the role of probiotics in preventing intestinal barrier dysfunction. The present study aims to investigate the effects of a commercially available probiotic formulation of L. rhamnosus LR 32, B. lactis BL 04, and B. longum BB 536 (Serobioma, Bromatech s.r.l., Milan, Italy) on TJPs and the integrity of the intestinal epithelial barrier, and the ability of this formulation to prevent lipopolysaccharide-induced, inflammation-associated damage. An in vitro model of the intestinal barrier was developed using a Caco-2 cell monolayer. The mRNA expression levels of the TJ genes were analyzed using real-time PCR. Changes in the amounts of proteins were assessed with Western blotting. The effect of Serobioma on the intestinal epithelial barrier function was assessed using transepithelial electrical resistance (TEER) measurements. The probiotic formulation tested in this study modulates the expression of TJPs and prevents inflammatory damage. Our findings provide new insights into the mechanisms by which probiotics are able to prevent damage to the gut epithelial barrier.
Collapse
|