1
|
Deng Y, Song L, Huang J, Zhou W, Liu Y, Lu X, Zhao H, Liu D. Astragalus polysaccharides ameliorates experimental colitis by regulating memory B cells metabolism. Chem Biol Interact 2024; 394:110969. [PMID: 38522565 DOI: 10.1016/j.cbi.2024.110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
It is well-established that the reduced Memory B cells (MBCs) play an important role in the pathogenesis of ulcerative colitis (UC), rendering them a potential therapeutic target for UC intervention. Astragalus polysaccharide (APS), a primary active constituent derived from the classic traditional Chinese medicine Astragalus membranaceus (AM), has been used for centuries in the treatment of UC in both human and animal subjects due to its renowned immunomodulatory properties. However, it is unknown whether APS can regulate MBCs to alleviate experimental colitis. In the present investigation, the murine colitis was successfully induced using dextran sulphate sodium (DSS) and subsequently treated with APS for a duration of 7 days. APS exhibited significant efficacy in reducing the disease activity index (DAI), colonic weight index, the index of colonic weight/colonic length. Furthermore, APS mitigated colonic pathological injuries, restored the colonic length, elevated the immunoglobulin A (IgA), transforming growth factor-β1 (TGF-β1) and interleukin (IL)-10 levels, while concurrently suppressing IgG, IgM, IL-6, tumor necrosis factor alpha (TNF-α) levels. Crucially, the quantities of MBCs, IgA+MBCs and forkhead box P3 (Foxp3+) MBCs were notably increased along with a concurrent decrease in IgG1+MBCs, IG2a+MBCs, IgG2b+MBCs after APS administration in colitis mice. Additionally, the Mitotracker red expressions of MBCs and their subgroups demonstrated a significantly up-regulation. Meanwhile, the transcriptomics analysis identified mitochondrial metabolism as the predominant and pivotal mechanism underlying APS-mediated mitigation of DSS-induced colitis. Key differentially expressed genes, including B-cell linker (BLNK), aldehyde dehydrogenase 1A1 (ALDH1A1), B-cell lymphoma 6 (BCL-6), B-lymphocyte-induced maturation protein 1 (Blimp-1), paired box gene 5 (PAX5), purinergic 2 × 7 receptor (P2X7R), B Cell activation factor (BAFF), B Cell activation factor receptor (BAFFR), CD40, nuclear factor kappa-B (NF-κB), IL-6 and so on were implicated in this process. These mRNA expressions were validated through quantitative polymerase chain reaction (qPCR) and immunohistochemistry. These findings revealed that APS effectively restored MBCs and their balance to ameliorate DSS-induced colitis, which was potentially realized via promoting mitochondrial metabolism to maintain MBCs activation.
Collapse
Affiliation(s)
- Yifei Deng
- Clinical Medical School, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Lizhao Song
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Wen Zhou
- Nanchang Medical College, Nanchang, 330052, Jiangxi Province, China
| | - Yali Liu
- Nanchang Medical College, Nanchang, 330052, Jiangxi Province, China
| | - Xiuyun Lu
- Nanchang Medical College, Nanchang, 330052, Jiangxi Province, China.
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China; Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Duanyong Liu
- Formula-Pattern Research Center of Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China; School of Nursing, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| |
Collapse
|