1
|
Nguyen Tat T, Lien NTK, Luu Sy H, Ta Van T, Dang Viet D, Nguyen Thi H, Tung NV, Thanh LT, Xuan NT, Hoang NH. Identifying the Pathogenic Variants in Heart Genes in Vietnamese Sudden Unexplained Death Victims by Next-Generation Sequencing. Diagnostics (Basel) 2024; 14:1876. [PMID: 39272661 PMCID: PMC11394071 DOI: 10.3390/diagnostics14171876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/15/2024] Open
Abstract
In forensics, one-third of sudden deaths remain unexplained after a forensic autopsy. A majority of these sudden unexplained deaths (SUDs) are considered to be caused by inherited cardiovascular diseases. In this study, we investigated 40 young SUD cases (<40 years), with non-diagnostic structural cardiac abnormalities, using Targeted NGS (next-generation sequencing) for 167 genes previously associated with inherited cardiomyopathies and channelopathies. Fifteen cases identified 17 variants on related genes including the following: AKAP9, CSRP3, GSN, HTRA1, KCNA5, LAMA4, MYBPC3, MYH6, MYLK, RYR2, SCN5A, SCN10A, SLC4A3, TNNI3, TNNI3K, and TNNT2. Of these, eight variants were novel, and nine variants were reported in the ClinVar database. Five were determined to be pathogenic and four were not evaluated. The novel and unevaluated variants were predicted by using in silico tools, which revealed that four novel variants (c.5187_5188dup, p.Arg1730llefsTer4 in the AKAP9 gene; c.1454A>T, p.Lys485Met in the MYH6 gene; c.2535+1G>A in the SLC4A3 gene; and c.10498G>T, p.Asp3500Tyr in the RYR2 gene) were pathogenic and three variants (c.292C>G, p.Arg98Gly in the TNNI3 gene; c.683C>A, p.Pro228His in the KCN5A gene; and c.2275G>A, p.Glu759Lys in the MYBPC3 gene) still need to be further verified experimentally. The results of our study contributed to the general understanding of the causes of SUDs. They provided a scientific basis for screening the risk of sudden death in family members of victims. They also suggested that the Targeted NGS method may be used to identify the pathogenic variants in SUD victims.
Collapse
Affiliation(s)
- Tho Nguyen Tat
- Department of Forensic Medicine, Hanoi Medical University, 1 Ton That Tung Str., Dongda, Hanoi 100000, Vietnam
| | - Nguyen Thi Kim Lien
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
| | - Hung Luu Sy
- Department of Forensic Medicine, Hanoi Medical University, 1 Ton That Tung Str., Dongda, Hanoi 100000, Vietnam
| | - To Ta Van
- Department of Pathology, National Cancer Hospital, 43 Quan Su Str., Hoan Kiem, Hanoi 100000, Vietnam
| | - Duc Dang Viet
- Cardiovascular Intensive Care Unit, Heart Institute, 108 Military Central Hospital, 1B Tran Hung Dao Str., Hai Ba Trung, Hanoi 100000, Vietnam
| | - Hoa Nguyen Thi
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
| | - Nguyen Van Tung
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
| | - Le Tat Thanh
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
| | - Nguyen Thi Xuan
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
| | - Nguyen Huy Hoang
- Institute of Genome Research, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
- Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Caugiay, Hanoi 100000, Vietnam
| |
Collapse
|
2
|
Jühlen R, Fahrenkrog B. From the sideline: Tissue-specific nucleoporin function in health and disease, an update. FEBS Lett 2023; 597:2750-2768. [PMID: 37873737 DOI: 10.1002/1873-3468.14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
The subcellular compartmentalisation of eukaryotic cells requires selective exchange between the cytoplasm and the nucleus. Intact nucleocytoplasmic transport is vital for normal cell function and mutations in the executing machinery have been causally linked to human disease. Central players in nucleocytoplasmic exchange are nuclear pore complexes (NPCs), which are built from ~30 distinct proteins collectively termed nucleoporins. Aberrant nucleoporin expression was detected in human cancers and autoimmune diseases since quite some time, while it was through the increasing use of next generation sequencing that mutations in nucleoporin genes associated with mainly rare hereditary diseases were revealed. The number of newly identified mutations is steadily increasing, as is the number of diseases. Mutational hotspots have emerged: mutations in the scaffold nucleoporins seemingly affect primarily inner organs, such as heart, kidney, and ovaries, whereas genetic alterations in peripheral, cytoplasmic nucleoporins affect primarily the central nervous system and development. In this review, we summarise latest insights on altered nucleoporin function in the context of human hereditary disorders, with a focus on those where mechanistic insights are beginning to emerge.
Collapse
Affiliation(s)
- Ramona Jühlen
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
3
|
Wei SJ, Du JL, Wang YB, Qu PF, Ma L, Sun ZC, Tang X, Liu K, Xi YM, Nie SJ, Jia PL, Long W, Qu YQ, Li YH, Lei PP. Whole exome sequencing with a focus on cardiac disease-associated genes in families of sudden unexplained deaths in Yunnan, southwest of China. BMC Genomics 2023; 24:57. [PMID: 36721086 PMCID: PMC9890689 DOI: 10.1186/s12864-022-09097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/22/2022] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES To explore the causes of sudden unexpected death (SUD) and to search for high-risk people, whole exome sequencing (WES) was performed in families with SUDs. METHODS: Whole exome sequencing of 25 people from 14 SUD families were screened based on cardiac disease-associated gene variants, and their echocardiograms and electrocardiograms (ECG) were also examined. The protein function of mutated genes was predicted by SIFT, PolyPhen2 and Mutation Assessor. RESULTS In the group of 25 people from 14 SUD families, 49 single nucleotide variants (SNVs) of cardiac disease-associated genes were found and verified by Sanger sequencing. 29 SNVs of 14 cardiac disorder-related genes were predicted as pathogens by software. Among them, 7 SNVs carried by two or more members were found in 5 families, including SCN5A (c.3577C > T), IRX4 (c.230A > G), LDB3 (c.2104 T > G), MYH6 (c.3G > A), MYH6 (c.3928 T > C), TTN (c.80987C > T) and TTN (c.8069C > T). 25 ECGs were collected. In summary, 4 people had J-point elevation, 2 people had long QT syndrome (LQTS), 4 people had prolonged QT interval, 3 people had T-wave changes, 3 people had sinus tachycardia, 4 people had sinus bradycardia, 4 people had left side of QRS electrical axis, and 3 people had P wave broadening. Echocardiographic results showed that 1 person had atrial septal defect, 1 person had tricuspid regurgitation, and 2 people had left ventricular diastolic dysfunction. CONCLUSIONS Of the 14 heart disease-associated genes in 14 SUDs families, there are 7 possible pathological SNVS may be associated with SUDs. Our results indicate that people with ECG abnormalities, such as prolonged QT interval, ST segment changes, T-wave change and carrying the above 7 SNVs, should be the focus of prevention of sudden death.
Collapse
Affiliation(s)
- Si-Jie Wei
- grid.285847.40000 0000 9588 0960Department of Forensic Medicine, Kunming Medical University, Kunming, 650500 Yunnan Province China
| | - Jin-Liang Du
- grid.449428.70000 0004 1797 7280Forensic Science Center of Jining Medical University, Jining, Shandong 272000 People’s Republic of China
| | - Yue-Bing Wang
- Yunnan Institute of Endemic Disease Control and Prevention, Dali, 671000 Yunnan Province China
| | - Peng-Fei Qu
- grid.285847.40000 0000 9588 0960Department of Forensic Medicine, Kunming Medical University, Kunming, 650500 Yunnan Province China ,grid.11135.370000 0001 2256 9319School of Basic Medicine, Peking University Health Science Center, Beijing, 100191 China
| | - Lin Ma
- Yunnan Institute of Endemic Disease Control and Prevention, Dali, 671000 Yunnan Province China
| | - Zhong-Chun Sun
- grid.285847.40000 0000 9588 0960Department of Forensic Medicine, Kunming Medical University, Kunming, 650500 Yunnan Province China
| | - Xue Tang
- Yunnan Institute of Endemic Disease Control and Prevention, Dali, 671000 Yunnan Province China
| | - Kai Liu
- grid.285847.40000 0000 9588 0960Department of Forensic Medicine, Kunming Medical University, Kunming, 650500 Yunnan Province China
| | - Yan-Mei Xi
- Yunnan Institute of Endemic Disease Control and Prevention, Dali, 671000 Yunnan Province China
| | - Sheng-Jie Nie
- grid.285847.40000 0000 9588 0960Department of Forensic Medicine, Kunming Medical University, Kunming, 650500 Yunnan Province China
| | - Peng-Lin Jia
- grid.285847.40000 0000 9588 0960Department of Forensic Medicine, Kunming Medical University, Kunming, 650500 Yunnan Province China
| | - Wu Long
- grid.285847.40000 0000 9588 0960Department of Forensic Medicine, Kunming Medical University, Kunming, 650500 Yunnan Province China
| | - Yong-Qiang Qu
- grid.285847.40000 0000 9588 0960Department of Forensic Medicine, Kunming Medical University, Kunming, 650500 Yunnan Province China
| | - Yu-Hua Li
- grid.285847.40000 0000 9588 0960Department of Forensic Medicine, Kunming Medical University, Kunming, 650500 Yunnan Province China
| | - Pu-Ping Lei
- grid.285847.40000 0000 9588 0960Department of Forensic Medicine, Kunming Medical University, Kunming, 650500 Yunnan Province China
| |
Collapse
|
4
|
Huynh MT, Proust A, Bouligand J, Popescu E. AKAP9-Related Channelopathy: Novel Pathogenic Variant and Review of the Literature. Genes (Basel) 2022; 13:2167. [PMID: 36421840 PMCID: PMC9690169 DOI: 10.3390/genes13112167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 08/30/2023] Open
Abstract
Disease-associated pathogenic variants in the A-Kinase Anchor Protein 9 (AKAP9) (MIM *604001) have been recently identified in patients with autosomal dominant long QT syndrome 11 (MIM #611820), lethal arrhythmia (ventricular fibrillation, polymorphic ventricular tachycardia), Brugada syndrome, and sudden unexpected death. However, AKAP9 sequence variations were rarely reported and AKAP9 was classified as a "disputed evidence" gene to support disease causation due to the insufficient genetic evidence and a limited number of reported AKAP9-mutated patients. Here, we describe a 47-year-old male carrying a novel frameshift AKAP9 pathogenic variant who presented recurrent syncopal attacks and sudden cardiac arrest that required a semi-automatic external defibrillator implant and an electric shock treatment of ventricular arrhythmia. This study provides insight into the mechanism underlying cardiac arrest and confirms that AKAP9 loss-of-function variants predispose to serious, life-threatening ventricular arrhythmias.
Collapse
Affiliation(s)
- Minh-Tuan Huynh
- Centre Hospitalier du Havre, Unité de Génétique Clinique, 29 Avenue Pierre Mendès-France, 76290 Montivilliers, France
- Laboratoire de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre, APHP Université Paris Saclay, 94270 Le Kremlin-Bicêtre, France; Inserm UMR_S 1185, Faculté de Médecine Paris Saclay, Université Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Alexis Proust
- Laboratoire de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre, APHP Université Paris Saclay, 94270 Le Kremlin-Bicêtre, France; Inserm UMR_S 1185, Faculté de Médecine Paris Saclay, Université Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Jérôme Bouligand
- Laboratoire de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Hôpital Bicêtre, APHP Université Paris Saclay, 94270 Le Kremlin-Bicêtre, France; Inserm UMR_S 1185, Faculté de Médecine Paris Saclay, Université Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Elena Popescu
- Centre Hospitalier du Havre, Service de Cardiologie, 29 Avenue Pierre Mendès-France, 76290 Montivilliers, France
| |
Collapse
|
5
|
Functional analysis of HADH c.99C>G shows that the variant causes the proliferation of pancreatic islets and leu-sensitive hyperinsulinaemia. J Genet 2022. [DOI: 10.1007/s12041-022-01381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|