1
|
Elbadawi MM, Eldehna WM, Abd El-Hafeez AA, Somaa WR, Albohy A, Al-Rashood ST, Agama KK, Elkaeed EB, Ghosh P, Pommier Y, Abe M. 2-Arylquinolines as novel anticancer agents with dual EGFR/FAK kinase inhibitory activity: synthesis, biological evaluation, and molecular modelling insights. J Enzyme Inhib Med Chem 2022; 37:349-372. [PMID: 34923887 PMCID: PMC8725837 DOI: 10.1080/14756366.2021.2015344] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 01/15/2023] Open
Abstract
In this study, different assortments of 2-arylquinolines and 2,6-diarylquinolines have been developed. Recently, we have developed a new series of 6,7-dimethoxy-4-alkoxy-2-arylquinolines as Topoisomerase I (TOP1) inhibitors with potent anticancer activity. Utilising the SAR outputs from this study, we tried to enhance anticancer and TOP1 inhibitory activities. Though target quinolines demonstrated potent antiproliferative effect, specifically against colorectal cancer DLD-1 and HCT-116, they showed weak TOP1 inhibition which may be attributable to their non-coplanarity. Thereafter, screening against kinase panel revealed their dual inhibitory activity against EGFR and FAK. Quinolines 6f, 6h, 6i, and 20f were the most potent EGFR inhibitors (IC50s = 25.39, 20.15, 22.36, and 24.81 nM, respectively). Meanwhile, quinolines 6f, 6h, 6i, 16d, and 20f exerted the best FAK inhibition (IC50s = 22.68, 14.25, 18.36, 17.36, and 15.36 nM, respectively). Finally, molecular modelling was employed to justify the promising EGFR/FAK inhibition. The study outcomes afforded the first reported quinolines with potent EGFR/FAK dual inhibition.
Collapse
Affiliation(s)
- Mostafa M. Elbadawi
- Department of Chemistry, Graduate School of Science, Hiroshima University, Hiroshima, Japan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Warda R. Somaa
- Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Keli K. Agama
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Comprehensive Cancer Center, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs Medical Center, La Jolla, CA, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
2
|
Brumley DA, Gunasekera SP, Sauvage T, dos Santos LAH, Chen QY, Paul VJ, Luesch H. Discovery, Synthesis, and Biological Evaluation of Anaenamides C and D from a New Marine Cyanobacterium, Hormoscilla sp. JOURNAL OF NATURAL PRODUCTS 2022; 85:581-589. [PMID: 35167289 PMCID: PMC9128392 DOI: 10.1021/acs.jnatprod.1c01073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Our ongoing efforts to explore the chemical space associated with marine cyanobacteria from coral reefs of Guam have yielded two new members of the anaenamide family of natural products, anaenamides C (3) and D (4). These compounds were isolated from a novel Hormoscilla sp. (VPG16-58). Our phylogenetic profiling (16S rDNA) of this cyanobacterium indicated that VPG16-58 is taxonomically distinct from the previously reported producer of the anaephenes, VPG16-59 (Hormoscilla sp.), and other previously documented species of the genus Hormoscilla. The planar structures of 3 and 4 were determined via spectroscopic methods, and absolute configurations of the α-hydroxy acids were assigned by enantioselective HPLC analysis. To address the requirement for sufficient material for testing, we first adapted our published linear synthetic approach for 1 and 2 to generate anaenoic acid (7), which served as a point for diversification, providing the primary amides 3 and 4 from synthetic intermediates 5 and 6, respectively. The compounds were then tested for effects on HCT116 colon cancer cell viability and in an ARE-luciferase reporter gene assay for Nrf2 modulation using HEK293 human embryonic kidney cells. Our findings indicate that, in contrast to cytotoxic methyl esters 1 and 2, the primary amides 3 and 4 activate the Nrf2 pathway at noncytotoxic concentrations. Overall, our data suggest that the anaenamide scaffold is tunable to produce differential biological outcomes.
Collapse
Affiliation(s)
- David A. Brumley
- Department of Medicinal Chemistry, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Sarath P. Gunasekera
- Smithsonian Marine Station at Ft. Pierce, 701 Seaway Drive, Ft. Pierce, FL 34949, United States
| | - Thomas Sauvage
- Smithsonian Marine Station at Ft. Pierce, 701 Seaway Drive, Ft. Pierce, FL 34949, United States
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90650-001 Brazil
| | | | - Qi-Yin Chen
- Department of Medicinal Chemistry, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Valerie J. Paul
- Smithsonian Marine Station at Ft. Pierce, 701 Seaway Drive, Ft. Pierce, FL 34949, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| |
Collapse
|
3
|
Elbadawi MM, Eldehna WM, Wang W, Agama KK, Pommier Y, Abe M. Discovery of 4-alkoxy-2-aryl-6,7-dimethoxyquinolines as a new class of topoisomerase I inhibitors endowed with potent in vitro anticancer activity. Eur J Med Chem 2021; 215:113261. [PMID: 33631697 DOI: 10.1016/j.ejmech.2021.113261] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 02/08/2023]
Abstract
In our attempt to develop potential anticancer agents targeting Topoisomerase I (TOP1), two novel series of 4-alkoxy-2-arylquinolines 14a-p and 19a-c were designed and synthesized based on structure activity relationships of the reported TOP1 inhibitors and structural features required for stabilization of TOP1-DNA cleavage complexes (TOP1ccs). The in vitro anticancer activity of these two series of compounds was evaluated at one dose level using NCI-60 cancer cell lines panel. Compounds 14e-h and 14m-p, with p-substituted phenyl at C2 and propyl linker at C4, were the most potent and were selected for assay at five doses level in which they exhibited potent anticancer activity at sub-micromolar level against diverse cancer cell lines. Compound 14m was the most potent with full panel GI50 MG-MID 1.26 μM and the most sensitive cancers were colon cancer, leukemia and melanoma with GI50 MG-MID 0.875, 0.904 and 0.926 μM, respectively. Melanoma (LOX IMVI) was the most sensitive cell line to all tested compounds displaying GI50 from 0.116 to 0.227 μM, TGI from 0.275 to 0.592 μM and LC50 at sub-micromolar concentration against almost of the tested compounds. Compounds 14e-h and 14m-p were assayed using TOP1-mediated DNA cleavage assay to evaluate their ability to stabilize TOP1ccs resulting in cancer cell death. The morpholino analogs 14h and 14p exhibited moderate TOP1 inhibitory activity compared to 1 μM camptothecin suggesting their use as lead compounds that can be optimized for the development of more potent anticancer agents with potential TOP1 inhibitory activity. Finally, Swiss ADME online web tool predicted that compounds 14h and 14p possessed good oral bioavailability and druglikeness characteristics.
Collapse
Affiliation(s)
- Mostafa M Elbadawi
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Wenjie Wang
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Keli K Agama
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Manabu Abe
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
4
|
Dar’in D, Krasavin M, Inyutina A, Chupakhin E. A Novel Approach to Substituted α-Carbamoyl Phosphonates: Useful Reagents for the Horner–Wadsworth–Emmons Olefination. Synlett 2020. [DOI: 10.1055/s-0040-1707200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
α-Carbamoyl phosphonates are useful reagents for the Horner–Wadsworth–Emmons olefination of aldehydes en route to medicinally relevant polysubstituted acrylamides. A new synthetic approach to these reagents has been developed. The methodology relies on the microwave-promoted Wolff rearrangement of α-acyl-α-diazophosphonates with trapping of the ketene intermediate in situ with various amines.
Collapse
Affiliation(s)
| | - Mikhail Krasavin
- Saint Petersburg State University
- Immanuel Kant Baltic Federal University
| | | | - Evgeny Chupakhin
- Saint Petersburg State University
- Immanuel Kant Baltic Federal University
| |
Collapse
|
5
|
Mieriņa I, Jure M, Stikute A. Synthetic approaches to 4-(het)aryl-3,4-dihydroquinolin-2(1H)-ones. Chem Heterocycl Compd (N Y) 2016. [DOI: 10.1007/s10593-016-1920-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Downey AM, Cairo CW. Synthesis of α-brominated phosphonates and their application as phosphate bioisosteres. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00255e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A review of the synthesis and biological activity of α-bromo-phosphonate groups as phosphate bioisosteres.
Collapse
Affiliation(s)
- A. Michael Downey
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre
- Department of Chemistry
- University of Alberta
- Edmonton, Canada
| |
Collapse
|
7
|
Fu M, Lin D, Deng Y, Zhang XQ, Liu Y, Lai C, Zeng W. Pd-catalyzed tandem homocoupling–aldol–dehydration of ortho-acylphenyl iodides. RSC Adv 2014. [DOI: 10.1039/c4ra02055c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A Pd-catalyzed cascade Ullmann coupling–aldol–dehydration reaction of ortho-acylphenyl iodides affords colchino analogues with wide functional group tolerance.
Collapse
Affiliation(s)
- Meiqin Fu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641, P. R. China
| | - Dongen Lin
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641, P. R. China
| | - Yuanfu Deng
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641, P. R. China
| | - Xiao-Qi Zhang
- College of Pharmacy
- Jinan University
- Guangzhou 510632, P. R. China
| | - Yanchu Liu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641, P. R. China
| | - Chunsong Lai
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641, P. R. China
| | - Wei Zeng
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510641, P. R. China
| |
Collapse
|
8
|
Eddarir S, Kajjout M, Rolando C. An efficient synthesis of (Z)-α-fluorochalcones via the palladium-catalyzed cross-coupling reaction of (Z)-α-fluorocinnamoyl chloride with boronic acids. Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Kajjout M, Zemmouri R, Eddarir S, Rolando C. An efficient access to (Z)-β-fluoroallyl alcohols based on the two carbon homologation of aromatic aldehydes by Horner–Wadsworth–Emmons reaction with 2-(diethoxyphosphinyl)-2-fluoro-ethanethioic acid, S-ethyl ester followed by reduction with sodium borohydride. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.02.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|