1
|
Zala AR, Kumar D, Razakhan U, Rajani DP, Ahmad I, Patel H, Kumari P. Molecular modeling and biological investigation of novel s-triazine linked benzothiazole and coumarin hybrids as antimicrobial and antimycobacterial agents. J Biomol Struct Dyn 2024; 42:3814-3825. [PMID: 37218082 DOI: 10.1080/07391102.2023.2216293] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
A novel series of s-triazine linked benzothiazole and coumarin hybrids (6a-6d, 7a-7d, and 8a-8d) were synthesized and characterized by IR, NMR, and mass spectrometry. The compound's in vitro antibacterial and antimycobacterial activities were also evaluated. Remarkable antibacterial activity with MIC in the range of 12.5-62.5 μM and antifungal activity of 100-200 μM were demonstrated by in vitro antimicrobial analysis. Compounds 6b, 6d, 7b, 7d, and 8a strongly inhibited all bacterial strains, while 6b, 6c, and 7d had good to moderate efficacy against M. tuberculosis H37Rv. Synthesized hybrids are observed in the active pocket of the S. aureus dihydropteroate synthetase enzyme, according to a molecular docking investigations. Among the docked compounds, 6d had a strong interaction and a greater binding affinity, and the dynamic stability of protein-ligand complexes was examined using molecular dynamic simulation with various settings at 100 ns. The proposed compounds successfully maintained their molecular interaction and structural integrity inside the S. aureus dihydropteroate synthase, according to the MD simulation analysis. These in silico analyses supported the in vitro antibacterial results of compound 6d, which demonstrated outstanding in vitro antibacterial efficacy against all bacterial strains. In the quest for new antibacterial drug-like molecules, compounds 6d, 7b, and 8a have been identified as promising lead compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ajayrajsinh R Zala
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Dinesh Kumar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Uvais Razakhan
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | | | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Premlata Kumari
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
2
|
Wu J, Wang X, Zhao Y, Hou Y, Gong P. Overview of CFTR activators and their recent studies for dry eye disease: a review. RSC Med Chem 2023; 14:2459-2472. [PMID: 38107177 PMCID: PMC10718525 DOI: 10.1039/d3md00448a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/23/2023] [Indexed: 12/19/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) gets activated via the cAMP signaling pathway and is present in various secretory epithelial cells, including conjunctival and corneal epithelial cells. Activation of CFTR leads to fluid secretion in both mouse and human ocular surfaces. Dry eye disease is a significant health problem for which limited therapeutic options are available. In this review, on the one hand, small molecule CFTR activators with different chemical structures are summarized, and on the other hand, the pharmacological activity test and structural optimization of small molecule CFTR activators in the treatment of dry eye are outlined. The purpose of this review is to highlight the important role of CFTR activators in the treatment of dry eye disease and their potential as a new strategy for the treatment of dry eye disease.
Collapse
Affiliation(s)
- Jie Wu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| | - Xiaoqian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| | - Yanfang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| | - Yunlei Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| | - Ping Gong
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 China
| |
Collapse
|
3
|
Lakhdari W, Benyahia I, Bouhenna MM, Bendif H, Khelafi H, Bachir H, Ladjal A, Hammi H, Mouhoubi D, Khelil H, Alomar TS, AlMasoud N, Boufafa N, Boufahja F, Dehliz A. Exploration and Evaluation of Secondary Metabolites from Trichoderma harzianum: GC-MS Analysis, Phytochemical Profiling, Antifungal and Antioxidant Activity Assessment. Molecules 2023; 28:5025. [PMID: 37446686 DOI: 10.3390/molecules28135025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, we investigated in vitro the potential of Trichoderma harzianum to produce bioactive secondary metabolites that can be used as alternatives to synthetic compounds. The study focused on analyzing two extracts of T. harzianum using ethyl acetate and n-butanol solvents with different polarities. The extracts were examined using phytochemical analysis to determine the content of polyphenols, flavonoids, tannins, and alkaloids. Thin-layer chromatography (TLC) and Gas chromatography-mass spectroscopy (GC-MS) analysis were used to profile volatile organic metabolites (VOCs) present in the extracts. Furthermore, the extracts were tested for their antifungal ability using the poison food technique. For measuring antioxidant activity, the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) test was used. Trichoderma harzianum was shown to have a significantly high content of tannins and alkaloids, with a noticeable difference between the two extracts. GC-MS analysis identified 33 potential compounds with numerous benefits that could be used in agriculture and the medicinal industry. Moreover, strong antifungal activity was identified against Sclerotinia sclerotiorum by 94.44%, Alternaria sp. by 77.04%, and Fusarium solani by 51.48; similarly, the IC50 of antioxidant activity was estimated for ethyl acetate extract by 71.47% and n-butanol extract by 56.01%. This leads to the conclusion that Trichoderma harzianum VOCs play a significant role as an antifungal and antioxidant agent when taking into account the advantageous bioactive chemicals noted in the extracts. However, to our knowledge, this is the first study in Algeria presenting detailed phytochemical analysis and GC-MS profiling of Trichoderma harzianum for two extracts, ethyl acetate and n-butanol.
Collapse
Affiliation(s)
- Wassima Lakhdari
- National Institute of Agronomic Research of Algeria, Touggourt 30200, Algeria
- Valcore Laboratory, Biology Department, Faculty of Life and Nature Sciences, University of Boumerdes, Boumerdes 35000, Algeria
| | - Ibtissem Benyahia
- Laboratory of Biogeochemistry and Desert Environments, Department of Chemistry, Faculty of Mathematics and Material Sciences, University of Kasdi Merbah, Ouargla 30000, Algeria
| | - Mustapha Mounir Bouhenna
- Scientific and Technical Center of Research in Physical and Chemical Analysis (CRAPC), Bou-Ismail 42004, Algeria
| | - Hamdi Bendif
- Department of Natural and Life Sciences, Faculty of Science, University of M'sila, M'sila 28000, Algeria
| | - Hafida Khelafi
- Valcore Laboratory, Biology Department, Faculty of Life and Nature Sciences, University of Boumerdes, Boumerdes 35000, Algeria
| | - Hakim Bachir
- Division of Hydraulic and Bioclimatology, National Institute of Agronomic Research (INRA), Algers 16000, Algeria
| | - Amel Ladjal
- Valcore Laboratory, Biology Department, Faculty of Life and Nature Sciences, University of Boumerdes, Boumerdes 35000, Algeria
| | - Hamida Hammi
- National Institute of Agronomic Research of Algeria, Touggourt 30200, Algeria
| | | | | | - Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84427, Riyadh 11671, Saudi Arabia
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84427, Riyadh 11671, Saudi Arabia
| | | | - Fehmi Boufahja
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abderrahmene Dehliz
- National Institute of Agronomic Research of Algeria, Touggourt 30200, Algeria
| |
Collapse
|
4
|
Abdel-Kader D, Talaat N. Ring transformation reactions of 4-hydroxy-3-nitro-6-phenyl-6 H-pyrano[3,2- c]quinoline-2,5-dione and antioxidant activity. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2175693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Dalia Abdel-Kader
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Nancy Talaat
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Talaat N, Abass M, Mohamed Hassanin H, Abdel-Kader D. Synthesis and anticancer activity of oxazolo and oxazinoquinolinone derivatives. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2112962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Nancy Talaat
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Mohamed Abass
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | | | - Dalia Abdel-Kader
- Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Abinaya R, Srinath S, Soundarya S, Sridhar R, Balasubramanian KK, Baskar B. Recent Developments on Synthesis Strategies, SAR Studies and Biological Activities of β-Carboline Derivatives – An Update. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Patel KB, Kumari P. A Review: Structure-activity relationship and antibacterial activities of Quinoline based hybrids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Synthesis, X-ray Structure and Biological Studies of New Self-Assembled Cu(II) Complexes Derived from s-triazine Schiff Base Ligand. Molecules 2022; 27:molecules27092989. [PMID: 35566339 PMCID: PMC9106035 DOI: 10.3390/molecules27092989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
The two ligands 2-(1-(2-(4,6-dimorpholino-1,3,5-triazin-2-yl)hydrazono)ethyl)aniline (DMAT) and 2-(1-(2-(4,6-dimorpholino-1,3,5-triazin-2-yl)hydrazono)ethyl)phenol (DMOHT) were used to synthesize three heteroleptic Cu(II) complexes via a self-assembly technique. The structure of the newly synthesized complexes was characterized using elemental analysis, FTIR and X-ray photoelectron spectroscopy (XPS) to be [Cu(DMAT)(H2O)(NO3)]NO3.C2H5OH (1), [Cu(DMOT)(CH3COO)] (2) and [Cu(DMOT)(NO3)] (3). X-ray single-crystal structure of complex 1 revealed a hexa-coordinated Cu(II) ion with one DMAT as a neutral tridentate NNN-chelate, one bidentate nitrate group and one water molecule. In the case of complex 2, the Cu(II) is tetra-coordinated with one DMOT as an anionic tridentate NNO-chelate and one monodentate acetate group. The antimicrobial, antioxidant and anticancer activities of the studied compounds were examined. Complex 1 had the best anticancer activity against the lung carcinoma A-549 cell line (IC50 = 5.94 ± 0.58 µM) when compared to cis-platin (25.01 ± 2.29 µM). The selectivity index (SI) of complex 1 was the highest (6.34) when compared with the free ligands (1.3–1.8), and complexes 2 (0.72) and 3 (2.97). The results suggested that, among those compounds studied, complex 1 is the most promising anticancer agent against the lung carcinoma A-549 cell line. In addition, complex 1 had the highest antioxidant activity (IC50 = 13.34 ± 0.58 µg/mL) which was found to be comparable to the standard ascorbic acid (IC50 = 10.62 ± 0.84 µg/mL). Additionally, complex 2 showedbroad-spectrum antimicrobial action against the microbes studied. The results revealed it to possess the strongest action of all the three complexes against B. subtilis. The MIC values found are 39.06, 39.06 and 78.125 mg/mL for complexes 1–3, respectively.
Collapse
|
9
|
Moussaoui O, Bhadane R, Sghyar R, Ilaš J, El Hadrami EM, Chakroune S, Salo‐Ahen OMH. Design, Synthesis, in vitro and in silico Characterization of 2-Quinolone-L-alaninate-1,2,3-triazoles as Antimicrobial Agents. ChemMedChem 2022; 17:e202100714. [PMID: 34978160 PMCID: PMC9305408 DOI: 10.1002/cmdc.202100714] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/16/2021] [Indexed: 11/07/2022]
Abstract
Due to the ever-increasing antimicrobial resistance there is an urgent need to continuously design and develop novel antimicrobial agents. Inspired by the broad antibacterial activities of various heterocyclic compounds such as 2-quinolone derivatives, we designed and synthesized new methyl-(2-oxo-1,2-dihydroquinolin-4-yl)-L-alaninate-1,2,3-triazole derivatives via 1,3-dipolar cycloaddition reaction of 1-propargyl-2-quinolone-L-alaninate with appropriate azide groups. The synthesized compounds were obtained in good yield ranging from 75 to 80 %. The chemical structures of these novel hybrid molecules were determined by spectroscopic methods and the antimicrobial activity of the compounds was investigated against both bacterial and fungal strains. The tested compounds showed significant antimicrobial activity and weak to moderate antifungal activity. Despite the evident similarity of the quinolone moiety of our compounds with fluoroquinolones, our compounds do not function by inhibiting DNA gyrase. Computational characterization of the compounds shows that they have attractive physicochemical and pharmacokinetic properties and could serve as templates for developing potential antimicrobial agents for clinical use.
Collapse
Affiliation(s)
- Oussama Moussaoui
- Laboratory of Applied Organic ChemistrySidi Mohamed Ben Abdellah University30000FezMorocco
| | - Rajendra Bhadane
- Structural Bioinformatics Laboratory, BiochemistryÅbo Akademi University20520TurkuFinland
- Pharmaceutical Sciences Laboratory, PharmacyÅbo Akademi University20520TurkuFinland
| | - Riham Sghyar
- Laboratory of Applied Organic ChemistrySidi Mohamed Ben Abdellah University30000FezMorocco
| | - Janez Ilaš
- Faculty of PharmacyUniversity of Ljubljana1000LjubljanaSlovenia
| | - El Mestafa El Hadrami
- Laboratory of Applied Organic ChemistrySidi Mohamed Ben Abdellah University30000FezMorocco
| | - Said Chakroune
- Laboratory of Applied Organic ChemistrySidi Mohamed Ben Abdellah University30000FezMorocco
| | - Outi M. H. Salo‐Ahen
- Structural Bioinformatics Laboratory, BiochemistryÅbo Akademi University20520TurkuFinland
- Pharmaceutical Sciences Laboratory, PharmacyÅbo Akademi University20520TurkuFinland
| |
Collapse
|
10
|
Patel JA, Patel NB, Maisuriya PK, Tiwari MR, Purohit AC. Structure-Activity Design, Synthesis and Biological Activity of Newer Imidazole-
Triazine Clubbed Derivatives as Antimicrobial and Antitubercular
Agents. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210521150011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Imidazole and triazine derivatives act as antimicrobial and antitubercular
agents. 2D-QSAR determination estimates the pharmacological activity based on the
thermodynamic properties of the structure.
Objective:
The structural arrangements and thermodynamic properties of the imidazole derivatives
are necessary for the enhancement of pharmacological activity. So,imidazole-triazine
clubbed derivatives were designed based on molecular modeling 2D-QSAR study on antitubercular
activity.
Methods:
PLSR method is applied for 2D-QSAR determination of the (Z)-5-ethylidene-3-(4-
methoxy-6-methyl-1,3,5-triazin-2-yl)-2-phenyl-3,5-dihydro-4H-imidazol-4-one (B1-B10). The
designed compounds were synthesized and spectrally evicted by IR, 1H NMR, 13C NMR, and
mass spectra data as well as biologically screened against the different antitubercular and antimicrobial
species.
Result:
Compounds B4, B6, and B7 were found potent against the different antimicrobial species.
Compound B3 was more effective against the M. tuberculosis H37Rv. Statistically significant
QSAR model generated by PLSR methods showed external r2=0.9775 and internal
q2=0.2798 predictive abilities. Furthermore, the model also incorporated three parameters, Polar
Surface Area Excluding Pand S, Mom Inertia Y, and SsCH3 count, with their corresponding
values for each molecule.
Conclusion:
The 2D-QSAR study revealed that antitubercular activity was directly proportional
to the total surface area of the polar atoms having molecules and the moment of inertia
on the Y-axis. At the same time, antitubercular activity was inversely proportional to the methyl
group joined with a single bond. The present study afforded favorable results, which were
further used to generate lead target molecules.
Collapse
Affiliation(s)
- Jaydeep A. Patel
- Department of Chemistry, Vidhyadeep Institute of Science, At. & Po. Anita, Kim-Olpad Road, Surat-394 110, Gujarat,
India
| | - Navin B. Patel
- Department of Chemistry, Veer Narmad South Gujarat University, Udhana-Magdalla Road, Surat-395 007, Gujarat, India
| | - Pratik K. Maisuriya
- Department of Chemistry, Veer Narmad South Gujarat University, Udhana-Magdalla Road, Surat-395 007, Gujarat,
India
| | - Monika R. Tiwari
- Department of Chemistry, Veer Narmad South Gujarat University, Udhana-Magdalla Road, Surat-395 007, Gujarat,
India
| | - Amit C. Purohit
- Department of Chemistry, Veer Narmad South Gujarat University, Udhana-Magdalla Road, Surat-395 007, Gujarat,
India
| |
Collapse
|
11
|
Singh S, Mandal MK, Masih A, Saha A, Ghosh SK, Bhat HR, Singh UP. 1,3,5-Triazine: A versatile pharmacophore with diverse biological activities. Arch Pharm (Weinheim) 2021; 354:e2000363. [PMID: 33760298 DOI: 10.1002/ardp.202000363] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022]
Abstract
1,3,5-Triazine and its derivatives have been the epicenter of chemotherapeutic molecules due to their effective biological activities, such as antibacterial, fungicidal, antimalarial, anticancer, antiviral, antimicrobial, anti-inflammatory, antiamoebic, and antitubercular activities. The present review represents a summarized report of the crucial biological activities possessed by substituted 1,3,5-triazine derivatives, with special attention to the most potent compounds.
Collapse
Affiliation(s)
- Saumya Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| | - Milan K Mandal
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| | - Anup Masih
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| | - Ashmita Saha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Surajit K Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Hans R Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Udaya P Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| |
Collapse
|
12
|
Synthesis of polyfluorinated 4‑hydroxyquinolin-2(1H)‑ones based on the cyclization of 2-alkynylanilines with carbon dioxide. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2020.109720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
|
14
|
Structural basis of binding and justification for the urease inhibitory activity of acetamide hybrids of N-substituted 1,3,4-oxadiazoles and piperidines. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
El-Faham A, Farooq M, Almarhoon Z, Alhameed RA, Wadaan MAM, de la Torre BG, Albericio F. Di- and tri-substituted s-triazine derivatives: Synthesis, characterization, anticancer activity in human breast-cancer cell lines, and developmental toxicity in zebrafish embryos. Bioorg Chem 2019; 94:103397. [PMID: 31706684 DOI: 10.1016/j.bioorg.2019.103397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/15/2019] [Accepted: 10/22/2019] [Indexed: 12/25/2022]
Abstract
Here we report on a small library based on a 4-aminobenzonitile-s-triazine moiety. We used a straightforward orthogonal synthetic pathway to prepare di- and tri-substituted s-triazine derivatives, whose basic structure was modified. The newly synthesized compounds were fully characterized by 1H NMR, 13C NMR and elemental analysis. They showed strong anticancer activity against two human breast cancer cell lines (MIDA-MB-231 and MCF-7), with IC50 values less than 1 µM. These s-triazine compounds were generally more selective towards hormone receptor-positive breast cancer cell line MCF-7 than the triple negative MDA-MB-231 cell line. Zebrafish embryos were used to test the developmental toxicity of the target compounds in vivo. The phenotype of embryos treated with the derivatives resembled that of those treated with estrogen disruptors. This observation strongly supports the notion that that these compounds induce their anticancer activity in human breast cancer cells via targeting the estrogen and progesterone receptors.
Collapse
Affiliation(s)
- Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Alexandria 21321, Egypt.
| | - Muhammad Farooq
- Bioproducts Research Chair, College of Science, Department of Zoology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Zainab Almarhoon
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rakia Abd Alhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad A M Wadaan
- Bioproducts Research Chair, College of Science, Department of Zoology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Beatriz G de la Torre
- KRISP, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4001, South Africa
| | - Fernando Albericio
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; School of Chemistry and Physics, University of KwaZulu-Natal, University Road, Westville, Durban 4001, South Africa; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, Barcelona 08028, Spain.
| |
Collapse
|
16
|
Recent advances in the synthetic and medicinal perspective of quinolones: A review. Bioorg Chem 2019; 92:103291. [PMID: 31561107 DOI: 10.1016/j.bioorg.2019.103291] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/16/2022]
Abstract
In the modern scenario, the quinolone scaffold has emerged as a very potent motif considering its clinical significance. Quinolones possess wide range of pharmacological activities such as anticancer, antibacterial, antifungal, antiprotozoal, antiviral, anti-inflammatory, carbonic anhydrase inhibitory and diuretic activity etc. The versatile synthetic approaches have been successfully applied and several of the resulted synthesized compounds exhibit fascinating biological activities in numerous fields. This has prompted to discover quinolone-based analogues among the researchers due to its great diversity in biological activities. In the past few years, various new, efficient and convenient synthetic approaches (including green chemistry and microwave-assisted synthesis) have been designed and developed to synthesize diverse quinolone-based scaffolds which represent a growing area of interest in academic and industry as well as to explore their biological activities. In this review, an attempt has been made by the authors to summarize (1) One of the most comprehensive listings of quinolone-based drugs or agents in the market or under various stages of clinical development; (2) Recent advances in the synthetic strategies for quinolone derivatives as well as their biological implications including insight of mechanistic studies. (3) Further, the biological data is correlated with structure-activity relationship studies to provide an insight into the rational design of more active agents.
Collapse
|
17
|
Zhang B. Quinolone derivatives and their antifungal activities: An overview. Arch Pharm (Weinheim) 2019; 352:e1800382. [PMID: 31021468 DOI: 10.1002/ardp.201800382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 11/06/2022]
Abstract
More than 300 million people suffer from the incidence of life-threatening invasive fungal infections, resulting in over 1.35 million deaths annually. Currently, the antifungal agents available in clinics are rather limited, and the rapid development of resistance to the existing antifungal drugs has further aggravated mortality. Quinolones possess a broad spectrum of chemotherapeutic properties and demonstrate considerable antifungal activities as well. Various quinolone derivatives have been screened for their antifungal activities, and some of them exhibit excellent potency against both drug-susceptible and drug-resistant fungi. This review aims to outline the recent advances in quinolone derivatives as potential antifungal agents and summarize the structure-activity relationship, to provide insights for the rational design of more active candidates.
Collapse
Affiliation(s)
- Bo Zhang
- School of Chemistry and Life Science, Anshan Normal University, Anshan, Liaoning, P.R. China
| |
Collapse
|
18
|
Biological evaluation and structure activity relationship of 9-methyl-1-phenyl-9H-pyrido[3,4-b]indole derivatives as anti-leishmanial agents. Bioorg Chem 2018; 84:98-105. [PMID: 30500524 PMCID: PMC6369240 DOI: 10.1016/j.bioorg.2018.11.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 10/14/2018] [Accepted: 11/21/2018] [Indexed: 11/22/2022]
Abstract
New anti-leishmanial agents designed through molecular hybridization approach. 7d showed potent anti-leishmanial activity against both L. infantum & L. donovani. 7d EC50 against L. infantum promastigotes, axenic amastigotes 1.59 & 1.4 µM. 7d EC50 against L. donovani promastigotes, axenic & intracellular amastigotes 0.91 & 0.91 & 1.4 µM.
A series of piperazinyl-β-carboline-3-carboxamide derivatives were designed through a molecular hybridization approach. Designed analogues were synthesized, characterized and evaluated for anti-leishmanial activity against Leishmania infantum and Leishmania donovani. In L. infantum inhibition assay, compounds 7d, 7g and 7c displayed potent inhibition of promastigotes (EC50 1.59, 1.47 and 3.73 µM respectively) and amastigotes (EC50 1.4, 1.9 and 2.6 µM respectively). SAR studies revealed that, para substitution of methoxy, chloro groups and methyl group on ortho position favored anti-leishmanial activity against L. infantum. Among these analogues 7d, 7h, 7n and 7g exhibited potent inhibition against L. donovani promastigotes (EC50 0.91, 4.0, 4.57 and 5.02 µM respectively), axenic amastigotes (EC50 0.9, 3.5, 2.2 and 3.8 µM respectively) and intracellular amastigotes (EC50 1.3, 7.8, 5.6 and 6.3 µM respectively). SAR studies suggested that, para substitution of methoxy group, para and meta substitution of chloro groups and benzyl replacement recommended for significant anti-leishmanial against L. donovani.
Collapse
|
19
|
Gao F, Wang P, Yang H, Miao Q, Ma L, Lu G. Recent developments of quinolone-based derivatives and their activities against Escherichia coli. Eur J Med Chem 2018; 157:1223-1248. [DOI: 10.1016/j.ejmech.2018.08.095] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022]
|
20
|
Ashok P, Chander S, Smith TK, Sankaranarayanan M. Design, synthesis and biological evaluation of piperazinyl-β-carbolinederivatives as anti-leishmanial agents. Eur J Med Chem 2018; 150:559-566. [DOI: 10.1016/j.ejmech.2018.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 01/11/2023]
|
21
|
Mewada NS, Shah DR, Lakum HP, Chikhalia KH. Synthesis and biological evaluation of novel s-triazine based aryl/heteroaryl entities: Design, rationale and comparative study. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.jaubas.2014.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nirali S. Mewada
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat India
| | - Dhruvin R. Shah
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat India
| | - Harshad P. Lakum
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat India
| | - Kishor H. Chikhalia
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat India
| |
Collapse
|
22
|
Recent developments of coumarin-containing derivatives and their anti-tubercular activity. Eur J Med Chem 2017; 136:122-130. [DOI: 10.1016/j.ejmech.2017.05.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/09/2017] [Accepted: 05/01/2017] [Indexed: 11/23/2022]
|
23
|
Malík I, Csöllei J, Jampílek J, Stanzel L, Zadražilová I, Hošek J, Pospíšilová Š, Čížek A, Coffey A, O'Mahony J. The Structure-Antimicrobial Activity Relationships of a Promising Class of the Compounds Containing the N-Arylpiperazine Scaffold. Molecules 2016; 21:molecules21101274. [PMID: 27681720 PMCID: PMC6273431 DOI: 10.3390/molecules21101274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022] Open
Abstract
This research was focused on in silico characterization and in vitro biological testing of the series of the compounds carrying a N-arylpiperazine moiety. The in silico investigation was based on the prediction of electronic, steric and lipohydrophilic features. The molecules were screened against Mycobacterium avium subsp. paratuberculosis CIT03, M. smegmatis ATCC 700084, M. kansasii DSM 44162, M. marinum CAMP 5644, Staphylococcus aureus ATCC 29213, methicillin-resistant S. aureus 63718, Escherichia coli ATCC 25922, Enterococcus faecalis ATCC 29212, Candida albicans CCM 8261, C. parapsilosis CCM 8260 and C. krusei CCM 8271, respectively, by standardized microdilution methods. The eventual antiproliferative (cytotoxic) impact of those compounds was examined on a human monocytic leukemia THP-1 cell line, as a part of the biological study. Promising potential against M. kansasii was found for 1-[3-(3-ethoxyphenylcarbamoyl)oxy-2-hydroxypropyl]-4-(3-trifluoromethylphenyl)piperazin-1-ium chloride (MIC = 31.75 μM), which was comparable to the activity of isoniazid (INH; MIC = 29.17 μM). Moreover, 1-{2-hydroxy-3-(3-methoxyphenylcarbamoyl)oxy)propyl}-4-(4-fluorophenyl)piperazin-1-ium chloride was even more effective (MIC = 17.62 μM) against given mycobacterium. Among the tested N-arylpiperazines, 1-{2-hydroxy-3-(4-methoxyphenylcarbamoyl)oxy)propyl}-4-(3-trifluoromethylphenyl)piperazin-1-ium chloride was the most efficient against M. marinum (MIC = 65.32 μM). One of the common features of all investigated substances was their insignificant antiproliferative (i.e., non-cytotoxic) effect. The study discussed structure–antimicrobial activity relationships considering electronic, steric and lipophilic properties.
Collapse
Affiliation(s)
- Ivan Malík
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, Bratislava SK-832 32, Slovak Republic.
| | - Jozef Csöllei
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences in Brno, Palackého 1946/1, Brno CZ-612 42, Czech Republic.
| | - Josef Jampílek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, Bratislava SK-832 32, Slovak Republic.
| | - Lukáš Stanzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, Bratislava SK-832 32, Slovak Republic.
| | - Iveta Zadražilová
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences in Brno, Palackého 1946/1, Brno CZ-612 42, Czech Republic.
| | - Jan Hošek
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences in Brno, Palackého 1946/1, Brno CZ-612 42, Czech Republic.
| | - Šárka Pospíšilová
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences in Brno, Palackého 1946/1, Brno CZ-612 42, Czech Republic.
| | - Alois Čížek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences in Brno, Palackého 1946/1, Brno CZ-612 42, Czech Republic.
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork T12 P928, Ireland.
| | - Jim O'Mahony
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork T12 P928, Ireland.
| |
Collapse
|
24
|
Penta A, Franzblau S, Wan B, Murugesan S. Design, synthesis and evaluation of diarylpiperazine derivatives as potent anti-tubercular agents. Eur J Med Chem 2015; 105:238-44. [PMID: 26498570 DOI: 10.1016/j.ejmech.2015.10.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 10/10/2015] [Accepted: 10/12/2015] [Indexed: 11/25/2022]
Abstract
Molecular hybridization is an emerging approach to design novel ligands by combination of two or more pharmacophoric subunits of known bioactive compounds. In the present study, we have designed a novel series of diarylpiperazine analogues, synthesized, characterized using FTIR, (1)H NMR, Mass, Elemental analysis and evaluated their in-vitro anti-tubercular activity. Among the reported sixteen diarylpiperazines, eleven analogues exhibited significant anti-tubercular activity against Mycobacterium tuberculosis H37Rv strain with MIC values below 6.25 μg/mL and good selectivity index. Structure activity relationship studies concluded that, ortho-para directing group (except para chloro) substitution on ortho and para position of piperazine attached phenyl ring favored anti-tubercular activity.
Collapse
Affiliation(s)
- Ashok Penta
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science, Pilani, 333031, India
| | - Scott Franzblau
- Institute for Tuberculosis Research, MC-964 College of Pharmacy, University of Illino's at Chicago, 833 S. Wood St, Chicago, IL, 60621-7231, USA
| | - Baojie Wan
- Institute for Tuberculosis Research, MC-964 College of Pharmacy, University of Illino's at Chicago, 833 S. Wood St, Chicago, IL, 60621-7231, USA
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science, Pilani, 333031, India.
| |
Collapse
|
25
|
Microwave-assisted TsOH/SiO 2 -catalyzed one-pot synthesis of novel fluoro-substituted coumarin hydrazones under solvent-free conditions. J Fluor Chem 2014. [DOI: 10.1016/j.jfluchem.2014.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Abstract
This review summarizes recent reports on s-triazine and its respective analogs from the medicinal chemistry angle. Due to its high reactivity and binding characteristic towards various enzymes, s-triazine has attracted attention. This is combined with facile synthesis and interesting pharmacology. The triazine class demonstrates wide biological applications - including antimicrobial, antituberculosis, anticancer, antiviral and antimalarial. In this article the library of s-triazine-based molecular designs has been collated with respective bioactivity. Compounds are further compared with other heterocyclic/nontriazine moieties to correlate the efficiency of privileged s-triazine. We hope this article may assist chemists in their drug design and discovery efforts.
Collapse
|
27
|
Patel PK, Patel RV, Mahajan DH, Parikh PA, Mehta GN, Pannecouque C, De Clercq E, Chikhalia KH. Different Heterocycles Functionalizeds-Triazine Analogues: Design, Synthesis andIn VitroAntimicrobial, Antituberculosis, and Anti-HIV Assessment. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.1769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paresh K. Patel
- Department of Applied Chemistry; Sardar Vallabhbhai National Institute of Technology (SVNIT); Surat 395 007 Gujarat India
| | - Rahul V. Patel
- Department of Applied Chemistry; Sardar Vallabhbhai National Institute of Technology (SVNIT); Surat 395 007 Gujarat India
| | - Dharmesh H. Mahajan
- Department of Chemistry (CGBIBT); Uka Tarsadia University; Maliba Campus, Bardoli-Mahuva Road, Bardoli 394 350 Dist: Surat Gujarat India
| | - Parimal A. Parikh
- Department of Chemical Engineering; Sardar Vallabhbhai National Institute of Technology (SVNIT); Surat 395007 Gujarat India
| | - Girish N. Mehta
- Department of Applied Chemistry; Sardar Vallabhbhai National Institute of Technology (SVNIT); Surat 395 007 Gujarat India
| | - Christophe Pannecouque
- Rega Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 B-3000 Leuven Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 B-3000 Leuven Belgium
| | - Kishor H. Chikhalia
- Department of Chemistry, School of Science; Gujarat University; Ahmedabad 380009 Gujarat India
| |
Collapse
|
28
|
Patel AB, Chikhalia KH, Kumari P. Facile synthesis of benzonitrile/nicotinonitrile based s-triazines as new potential antimycobacterial agents. Eur J Med Chem 2014; 79:57-65. [PMID: 24721315 DOI: 10.1016/j.ejmech.2014.03.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
Abstract
A common strategy to synthesize 4/6-(4-(4-methylpiperazin-1-yl)-6-(4-(4-oxo-2-phenylthiazolidin-3-yl)phenyl)-1,3,5-triazin-2-yloxy)benzonitriles/nicotinonitriles was developed by applying an efficient palladium-catalyzed C-C Suzuki coupling. Moreover, the synthesized compounds were also tested for their in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Rv using BACTEC MGIT and Lowenstein-Jensen MIC methods. Several compounds displayed profound antimycobacterial activity in combination with low toxicity towards mammalian cells. The best results were observed amongst the nicotinonitrile substituted s-triazine analogs and it could be a potential starting point to develop new lead compounds in the fight against M. tuberculosis H37Rv. The newly synthesized compounds were characterized by IR, (1)H NMR, (13)C NMR, MS and elemental analysis.
Collapse
Affiliation(s)
- Amit B Patel
- Department of Applied Chemistry, S. V. National Institute of Technology, Surat 395007, India
| | - Kishor H Chikhalia
- Department of Chemistry, School of Science, Gujarat University, Ahmedabad 380009, India.
| | - Premlata Kumari
- Department of Applied Chemistry, S. V. National Institute of Technology, Surat 395007, India.
| |
Collapse
|
29
|
Rehman S, Ikram M, Baker RJ, Zubair M, Azad E, Min S, Riaz K, Mok KH, Rehman SU. Synthesis, characterization, in vitro antimicrobial, and U2OS tumoricidal activities of different coumarin derivatives. Chem Cent J 2013; 7:68. [PMID: 23587363 PMCID: PMC3668295 DOI: 10.1186/1752-153x-7-68] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/19/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Coumarin and its derivatives are biologically very active. It was found that the enhanced activities are dependent on the coumarin nucleus. Biological significance of these compounds include anti-bacterial, anti-thrombotic and vasodilatory, anti-mutagenic, lipoxygenase and cyclooxygenase inhibition, scavenging of reactive oxygen species, and anti-tumourigenic. Our interest in medicinal chemistry of dicoumarol compounds have been developed by keeping in view the importance of coumarins along with its derivatives in medicinal chemistry. All the synthesized compounds were fully characterized by spectroscopic and analytical techniques and were screened for antimicrobial and U2OS bone cancer activities. RESULTS 4-hydroxycoumarin was derivatized by condensing with different aldehydes yielding the dicoumarol and translactonized products. Elemental analyses, ESI(+,-) MS, 1H and 13C{1H}-NMR, infrared spectroscopy and conductance studies were used to characterize the synthesized compounds which revealed the dicoumarol and dichromone structures for the compounds. The compounds were screened against U2OS cancerous cells and pathogenic micro organisms. The compounds with intermolecular H-bonding were found more active revealing a possible relationship among hydrogen bonding, cytotoxicity and antimicrobial activities. CONCLUSION Coumarin based drugs can be designed for the possible treatment of U2OS leukemia.
Collapse
Affiliation(s)
- Sadia Rehman
- Institute of Chemical Sciences, University of Peshawar 25120, Peshawar, Pakistan
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Muhammad Ikram
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Robert J Baker
- School of Chemistry, University of Dublin, Trinity College Dublin 2, Dublin, Ireland
| | - Muhammad Zubair
- School of Chemistry, University of Dublin, Trinity College Dublin 2, Dublin, Ireland
| | - Effat Azad
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Soyoung Min
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Kashif Riaz
- Department of Plant Pathology, University of Agriculture Faisalabad-Pakistan, Faisalabad, Pakistan
| | - KH Mok
- Trinity Biomedical Sciences Institute (TBSI), School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Saeed-Ur Rehman
- Institute of Chemical Sciences, University of Peshawar 25120, Peshawar, Pakistan
| |
Collapse
|
30
|
Patel RV, Patel JK, Nile SH, Park SW. Copper(II) Triflate Promoted Multicomponent Catalytic Clubbing of Piperazinyl-Thiazoloquinolines and Thiazolocoumarins as Antimicrobials. Arch Pharm (Weinheim) 2013; 346:221-31. [DOI: 10.1002/ardp.201200383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/12/2012] [Accepted: 12/21/2012] [Indexed: 11/09/2022]
|
31
|
Dalvadi JP, Patel PK, Chikhalia KH. Convenient synthesis of s-triazine based urea derivatives via a palladium catalyzed C–N coupling reaction. RSC Adv 2013. [DOI: 10.1039/c3ra40490k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
32
|
Antimicrobial, anti-TB, anticancer and anti-HIV evaluation of new s-triazine-based heterocycles. Future Med Chem 2012; 4:1053-65. [PMID: 22709250 DOI: 10.4155/fmc.12.57] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The acquirement of resistance by microorganisms to the antimicrobial arsenal is a threat to public health. A recent WHO report estimated that 1.3 million HIV-negative people and 0.38 million HIV-positive people died from TB in 2009. Various forms of cancer account for a high percentage of deaths in both women (breast cancer) and men (prostate cancer). RESULTS & DISCUSSION In vitro activity assessment of newly constructed s-triazines against a panel of microorganisms including bacteria, fungi and Mycobacteria demonstrated that the compounds are of immense attraction for impending drug discovery. They were further examined for in vitro activity against breast cancer and prostate cancer cell lines, as well as HIV-1 (III(B)) and HIV-2 (ROD) viral strains. Proposed structural confirmation studies by IR, (1)H NMR, (13)C NMR, (19)F NMR spectroscopy and elemental analysis were in accordance. CONCLUSION Activity profiles of the products may contribute considerably to future drug-discovery studies.
Collapse
|
33
|
Design, synthesis, characterization, and in vitro antimicrobial action of novel trisubstituted s-triazines. Med Chem Res 2012. [DOI: 10.1007/s00044-011-9849-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Lin X, Zhou J, Xu D. Facile Synthesis of Dendritic Hydroxyl‐terminated Cyanuric Chloride Derivatives and Their Properties. CHINESE J CHEM 2012. [DOI: 10.1002/cjoc.201100557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiuxiu Lin
- College of Chemistry, Chemical Engineering and Materials Science; National Engineering Laboratory for Modern Silk; Key Laboratory of Organic Synthesis of Jiangsu Province; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianhua Zhou
- (Suzhou) Zhongke Nanotech Coating Co. LTD, Suzhou, Jiangsu 215024, China
| | - Dongmei Xu
- College of Chemistry, Chemical Engineering and Materials Science; National Engineering Laboratory for Modern Silk; Key Laboratory of Organic Synthesis of Jiangsu Province; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
35
|
Synthesis of potential antitubercular and antimicrobial s-triazine-based scaffolds via Suzuki cross-coupling reaction. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0041-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Synthesis of coumarin-based 1,3,4-oxadiazol-2ylthio-N-phenyl/benzothiazolyl acetamides as antimicrobial and antituberculosis agents. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0026-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Wani MY, Bhat AR, Azam A, Choi I, Athar F. Probing the antiamoebic and cytotoxicity potency of novel tetrazole and triazine derivatives. Eur J Med Chem 2012; 48:313-20. [DOI: 10.1016/j.ejmech.2011.12.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/09/2011] [Accepted: 12/20/2011] [Indexed: 11/15/2022]
|