Koley S, Altman RA. Recent Advances in Transition Metal-Catalyzed Functionalization of
gem-Difluoroalkenes.
Isr J Chem 2020;
60:313-339. [PMID:
32523163 PMCID:
PMC7286626 DOI:
10.1002/ijch.201900173]
[Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/17/2020] [Indexed: 11/11/2022]
Abstract
gem-Difluorinated alkenes are readily accessible building blocks that can undergo functionalization to provide a broad spectrum of fluorinated and non-fluorinated products. Herein, we review recent (since 2017) transition metal-catalyzed transformations of these specialized alkenes and summarize general reactivity patterns of these reactions. Many transition metal-catalyzed reactions undergo net C-F bond functionalization reactions to deliver monofluorinated products. These reactions typically proceed through β-fluoro alkylmetal intermediates that readily eliminate a β-fluoride to deliver monofluoroalkene products. A second series of reactions exploit coinage metal fluorides to add F- to the gem-difluorinated alkene, and further functionalization delivers trifluoromethyl-containing products. In stark contrast, few transition metal-catalyzed reactions proceed in net "fluorine-retentive processes" to deliver difluoromethylene-based products.
Collapse