1
|
Chen M, Lu Y, Shen Y, Wang Q. N-Trifluoroethoxy Benzotriazolium Triflate: A Readily Available Reagent for Direct Radical Trifluoroethoxylation of Alkenes. Org Lett 2024; 26:9586-9591. [PMID: 39470382 DOI: 10.1021/acs.orglett.4c03710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Herein, we describe the development and application of a novel benzotriazole-based reagent toward radical trifluoroethoxylation. Various alkene classes, including styrene derivatives, enol carbonates, and allyl silanes, are viable reaction partners in this transformation, yielding diverse trifluoroethoxylated products. Furthermore, this method is readily applicable for the late-stage modification of natural product and drugs molecules. Mechanistic and computational studies suggest the intermediacy of an OCH2CF3 radical generated under photocatalytic conditions.
Collapse
Affiliation(s)
- Mingxi Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi People's Republic of China
| | - Yuhui Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi People's Republic of China
| | - Yiwen Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi People's Republic of China
| | - Quande Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, Guangxi People's Republic of China
| |
Collapse
|
2
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
3
|
Béke F, Csenki JT, Novák Z. Fluoroalkylations and Fluoroalkenylations with Iodonium Salts. CHEM REC 2023; 23:e202300083. [PMID: 37129578 DOI: 10.1002/tcr.202300083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Synthesis and applications of fluoroalkyl and fluoroalkenyliodonium salts are summarized in this account article, focusing preferably to the reagents designed in our laboratory in the last decade. Among these reagents trifluoroethyl(aryl)iodonium salts have been used most frequently to build carbon-carbon and carbon-heteroatom bonds in simple nucleophilic substitutions and through transition metal catalyzed coupling reactions. Iodonium salts equipped with unsaturated fluorinated function showed diverse reactivity due to their electron deficient character, and these molecular motifs enable cycloadditions and nucleophilic additions to prepare fluorinated carbo- and heterocyclic molecules. Beyond the overview of existing transformations, with the presented collection, we aim to inspire future developments of iodonium reagents and their application in organic synthesis.
Collapse
Affiliation(s)
- Ferenc Béke
- Catalysis and Organic Synthesis Research Group, Institute of Chemistry., Eötvös Loránd University, Pázmány Péter stny. 1/a, Budapest, 1117, Hungary
| | - János T Csenki
- Catalysis and Organic Synthesis Research Group, Institute of Chemistry., Eötvös Loránd University, Pázmány Péter stny. 1/a, Budapest, 1117, Hungary
| | - Zoltán Novák
- Catalysis and Organic Synthesis Research Group, Institute of Chemistry., Eötvös Loránd University, Pázmány Péter stny. 1/a, Budapest, 1117, Hungary
| |
Collapse
|
4
|
Diastereo-selective synthesis of CF3-substituted epoxide via in situ generated trifluoroethylideneiodonium ylide. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
5
|
Han ZZ, Zhang CP. Phenyl(trifluoroethyl)iodonium-triflate-initiated ring-opening polymerization of tetrahydrofuran. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Zhao K, Zhang ZY, Cui XL, Wang YX, Wu XD, Li WM, Wu JX, Zhao LL, Guo JY, Loh TP. Visible-Light-Induced Regio- and Stereoselective C(sp 2)-H Trifluoroethylation of Enamides with 2,2,2-Trifluoroethyl Iodide. Org Lett 2020; 22:9029-9035. [PMID: 33176097 DOI: 10.1021/acs.orglett.0c03418] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photoredox-catalyzed regio- and stereoselective trifluoroethylation reaction of enamides using commercially available 2,2,2-trifluoroethyl iodide as trifluoroethylating agents has been developed, furnishing geometrically defined and synthetically and physiochemically pivotal β-trifluoroethylated enamides bearing a diverse range of functional groups.
Collapse
Affiliation(s)
- Kai Zhao
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Ze-Yu Zhang
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xian-Lu Cui
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Ying-Xue Wang
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xian-Dan Wu
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Wei-Ming Li
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Jia-Xu Wu
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Li-Li Zhao
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Jing-Yu Guo
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
7
|
Han Q, Hu X, Xue X, Zhao C, Zhang C. Palladium‐Catalyzed Trifluoroethylation of Benzo[
h
]quinoline Derivatives by Mesityl(2,2,2‐trifluoroethyl)iodonium Triflate. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qiu‐Yan Han
- School of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 China
| | - Xiaoxiao Hu
- State Key Laboratory of Elemento-organic Chemistry, College of ChemistryNankai University Tianjin 300071 China
| | - Xiao‐Song Xue
- State Key Laboratory of Elemento-organic Chemistry, College of ChemistryNankai University Tianjin 300071 China
| | - Cheng‐Long Zhao
- School of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 China
| | - Cheng‐Pan Zhang
- School of Chemistry, Chemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 China
| |
Collapse
|
8
|
Zhao CL, Han QY, Zhang CP. TfOH-Promoted Transition-Metal-Free Cascade Trifluoroethylation/Cyclization of Organic Isothiocyanates by Phenyl(2,2,2-trifluoroethyl)iodonium Triflate. Org Lett 2018; 20:6480-6484. [DOI: 10.1021/acs.orglett.8b02793] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cheng-Long Zhao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Qiu-Yan Han
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Cheng-Pan Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
- Department of Chemistry, College of Basic Medicine, Army Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
9
|
Lu Y, Goldstein EL, Stoltz BM. Palladium-Catalyzed Enantioselective C sp3-C sp3 Cross-Coupling for the Synthesis of (Poly)fluorinated Chiral Building Blocks. Org Lett 2018; 20:5657-5660. [PMID: 30183315 PMCID: PMC6192028 DOI: 10.1021/acs.orglett.8b02369] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A general method for the enantioselective synthesis of carbo- and heterocyclic carbonyl compounds bearing fluorinated α-tetrasubstituted stereocenters using palladium-catalyzed decarboxylative allylic alkylation is described. The stereoselective Csp3-Csp3 cross-coupling reaction delivers five- and six-membered ketone and lactam products bearing (poly)fluorinated tetrasubstituted chiral centers in high yields and enantioselectivities. These fluorinated, stereochemically rich building blocks hold potential value in medicinal chemistry and are prepared using an orthogonal and enantioselective approach into such chiral moieties compared to traditional approaches, often without the use of electrophilic fluorinating reagents.
Collapse
Affiliation(s)
- Yanhui Lu
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 101-20, Pasadena, California 91125, United States
| | - Elizabeth L. Goldstein
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 101-20, Pasadena, California 91125, United States
| | - Brian M. Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 101-20, Pasadena, California 91125, United States
| |
Collapse
|