1
|
Yang Q, Huang W, Yin D, Zhang L, Gao Y, Tong J, Li Z. EPHX1 and GSTP1 polymorphisms are associated with COPD risk: a systematic review and meta-analysis. Front Genet 2023; 14:1128985. [PMID: 37284064 PMCID: PMC10239837 DOI: 10.3389/fgene.2023.1128985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) affects approximately 400 million people worldwide and is associated with high mortality and morbidity. The effect of EPHX1 and GSTP1 gene polymorphisms on COPD risk has not been fully characterized. Objective: To investigate the association of EPHX1 and GSTP1 gene polymorphisms with COPD risk. Methods: A systematic search was conducted on 9 databases to identify studies published in English and Chinese. The analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines (PRISMA). The pooled OR and 95% CI were calculated to evaluate the association of EPHX1 and GSTP1 gene polymorphisms with COPD risk. The I2 test, Q test, Egger's test, and Begg's test were conducted to determine the level of heterogeneity and publication bias of the included studies. Results: In total, 857 articles were retrieved, among which 59 met the inclusion criteria. The EPHX1 rs1051740 polymorphism (homozygote, heterozygote, dominant, recessives, and allele model) was significantly associated with high risk of COPD risk. Subgroup analysis revealed that the EPHX1 rs1051740 polymorphism was significantly associated with COPD risk among Asians (homozygote, heterozygote, dominant, and allele model) and Caucasians (homozygote, dominant, recessives, and allele model). The EPHX1 rs2234922 polymorphism (heterozygote, dominant, and allele model) was significantly associated with a low risk of COPD. Subgroup analysis showed that the EPHX1 rs2234922 polymorphism (heterozygote, dominant, and allele model) was significantly associated with COPD risk among Asians. The GSTP1 rs1695 polymorphism (homozygote and recessives model) was significantly associated with COPD risk. Subgroup analysis showed that the GSTP1 rs1695 polymorphism (homozygote and recessives model) was significantly associated with COPD risk among Caucasians. The GSTP1 rs1138272 polymorphism (heterozygote and dominant model) was significantly associated with COPD risk. Subgroup analysis suggested that the GSTP1 rs1138272 polymorphism (heterozygote, dominant, and allele model) was significantly associated with COPD risk among Caucasians. Conclusion: The C allele in EPHX1 rs1051740 among Asians and the CC genotype among Caucasians may be risk factors for COPD. However, the GA genotype in EPHX1 rs2234922 may be a protective factor against COPD in Asians. The GG genotype in GSTP1 rs1695 and the TC genotype in GSTP1 rs1138272 may be risk factors for COPD, especially among Caucasians.
Collapse
Affiliation(s)
- Qinjun Yang
- Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin’An Medicine, Ministry of Education, Hefei, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Wanqiu Huang
- Anhui University of Chinese Medicine, Hefei, China
| | - Dandan Yin
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lu Zhang
- Anhui University of Chinese Medicine, Hefei, China
| | - Yating Gao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jiabing Tong
- Anhui University of Chinese Medicine, Hefei, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Anhui Provincial Department of Education, Hefei, China
| | - Zegeng Li
- Anhui University of Chinese Medicine, Hefei, China
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Anhui Provincial Department of Education, Hefei, China
| |
Collapse
|
2
|
Attafi IM, Bakheet SA, Ahmad SF, Belali OM, Alanazi FE, Aljarboa SA, Al-Alallah IA, Korashy HM. Lead Nitrate Induces Inflammation and Apoptosis in Rat Lungs Through the Activation of NF-κB and AhR Signaling Pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64959-64970. [PMID: 35482242 PMCID: PMC9481511 DOI: 10.1007/s11356-022-19980-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/25/2022] [Indexed: 05/28/2023]
Abstract
Lead (Pb) is one of the most frequent hazardous air contaminants, where the lungs are particularly vulnerable to its toxicity. However, the Pb distribution and its impact on lung inflammation/apoptosis and particularly the involvement of nuclear factor kappa B (NF-κB) and aryl hydrocarbon receptor (AhR) signaling pathways in Pb-induced lung toxicity have not yet been fully investigated. Adult male Wistar albino rats were exposed to Pb nitrate 25, 50, and 100 mg/kg b.w. orally for 3 days. The histopathological changes of several rat organs were analyzed using hematoxylin and eosin staining. The concentrations of Pb ion in different organ tissues were quantified using inductive coupled plasma mass spectrometry, while gas chromatography-mass spectrometry was used to identify organic compounds. The changes in the mRNA and protein expression levels of inflammatory and apoptotic genes in response to Pb exposure were quantified by using RT-PCR and Western blot analyses, respectively. Treatment of rats with Pb for three consecutive days significantly increased the accumulation of Pb in lung tissues causing severe interstitial inflammation. Pb treatment also increased the percentage of lung apoptotic cells and modulated apoptotic genes (Bc2, p53, and TGF-α), inflammatory markers (IL-4, IL-10, TNF-α), and oxidative stress biomarkers (iNOS, CYP1A1, EphX) in rat lung tissues. These effects were associated with a significant increase in organic compounds, such as 3-nitrotyrosine and myeloperoxidase, and some inorganic elements, such as selenium. Importantly, the Pb-induced lung inflammation and apoptosis were associated with a proportional increase in the expression of NF-κB and AhR mRNAs and proteins. These findings clearly show that Pb induces severe inflammation and apoptosis in rat lungs and suggest that NF-κB and AhR may play a role in Pb-induced lung toxicity.
Collapse
Affiliation(s)
- Ibraheem M Attafi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Poison Control and Medical Forensic Chemistry Center, Jazan Health Affairs, Jazan, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Osamah M Belali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Aseer Central Hospital, Asser health affairs, Ministry of Health, Abha, Saudi Arabia
| | - Fawaz E Alanazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Suliman A Aljarboa
- Central Laboratory, Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A Al-Alallah
- Pathology and Clinical Laboratories Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
3
|
Akparova A, Abdrakhmanova B, Banerjee N, Bersimbaev R. EPHX1 Y113H polymorphism is associated with increased risk of chronic obstructive pulmonary disease in Kazakhstan population. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 816-817:1-6. [PMID: 28464990 DOI: 10.1016/j.mrgentox.2017.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/30/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a type of obstructive lung disease characterized by long term poor airflow which worsens over time. It is considered to be one of the top five chronic diseases of the world in terms of morbidity and mortality. Genetic variability has been found to contribute to the development of COPD. Although association between gene polymorphisms in EPHX1 and TNF-a genes and chronic obstructive pulmonary disease (COPD) have been found but till date no genetic association studies have been done in the COPD affected Kazakhstan population. The aim of the present work was to investigate the association between the Y113H polymorphism (rs1051740) in EPHX1 gene and -308G/A polymorphism (rs1800629) in TNF-a gene and COPD in Kazakhstan population. A case-control study was conducted in Astana and Akmola regions of Kazakhstan, involving 55 cases with COPD and 52 healthy individuals who served as the controls. The polymorphisms were determined using conventional PCR and Sanger sequencing method. Results show that for the EPHX1 gene Y113H polymorphism, the presence of an "C" allele (TC/CC genotype) was significantly overrepresented in the COPD patients compared to the controls. For the TNF-a gene -308G/A polymorphism, no significant difference was found between the two groups. Thus we found that, Y113H polymorphism in EPHX1 gene contributed to increased susceptibility to COPD in the Kazakhstan population.
Collapse
Affiliation(s)
- Almira Akparova
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, 2, Satpayev str., Astana, 010008, Kazakhstan.
| | - Balkiya Abdrakhmanova
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, 2, Satpayev str., Astana, 010008, Kazakhstan
| | - Nilanjana Banerjee
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata,700032, India.
| | - Rakhmetkazhy Bersimbaev
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, 2, Satpayev str., Astana, 010008, Kazakhstan
| |
Collapse
|
4
|
Malic Z, Topic A, Francuski D, Stankovic M, Nagorni-Obradovic L, Markovic B, Radojkovic D. Oxidative Stress and Genetic Variants of Xenobiotic-Metabolising Enzymes Associated with COPD Development and Severity in Serbian Adults. COPD 2016; 14:95-104. [PMID: 27421065 DOI: 10.1080/15412555.2016.1199667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The genetic and non-genetic factors that contribute to the development of chronic obstructive pulmonary disease (COPD) are still poorly understood. We investigated the potential role of genetic variants of xenobiotic-metabolising enzymes (glutathione-S-transferase M1, GSTM1; glutathione-S-transferase T1, GSTT1; microsomal epoxide hydrolase, mEH), oxidative stress (assessed by urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine, 8-oxodG/creatinine), sex, ageing and smoking habits on susceptibility to development of COPD and its severity in Serbian population. The investigated population consisted of 153 healthy subjects (85 males and 68 females) and 71 patients with COPD (33 males and 38 females). Detection of GSTM1*null, GSTT1*null, mEH Tyr113His and mEH His139Arg gene variants was performed by PCR/RFLP method. Urinary 8-oxodG was determined using HPLC-MS/MS, and expressed as 8-oxodG/creatinine. We revealed that increased urinary 8-oxodG/creatinine and leucocytosis are the strongest independent predictors for COPD development. Increased level of oxidative stress increased the risk for COPD in males [odds ratio (OR), 95% confidence interval (CI): 8.42, 2.26-31.28], more than in females (OR, 95% CI: 3.60, 1.37-9.45). Additionally, independent predictors for COPD were ageing in males (OR, 95% CI: 1.29, 1.12-1.48), while in females they were at least one GSTM1 or GSTT1 gene deletion in combination (OR, 95% CI: 23.67, 2.62-213.46), and increased cumulative cigarette consumption (OR, 95% CI: 1.09, 1.01-1.16). Severity of COPD was associated with the combined effect of low mEH activity phenotype, high level of oxidative stress and heavy smoking. In conclusion, early identification of GSTM1*null or GSTT1*null genotypes in females, low mEH activity phenotype in heavy smokers and monitoring of oxidative stress level can be useful diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Zivka Malic
- a Faculty of Pharmacy, University of Bijeljina , Bijeljina , Bosnia and Herzegovina
| | - Aleksandra Topic
- b Department of Medical Biochemistry , Faculty of Pharmacy, University of Belgrade , Belgrade , Serbia
| | - Djordje Francuski
- c Institute of Molecular Genetics and Genetic Engineering, University of Belgrade , Belgrade , Serbia
| | - Marija Stankovic
- c Institute of Molecular Genetics and Genetic Engineering, University of Belgrade , Belgrade , Serbia
| | - Ljudmila Nagorni-Obradovic
- d Clinic for Pulmonary Diseases Clinical Centre of Serbia, University of Belgrade, School of Medicine , Belgrade , Serbia
| | - Bojan Markovic
- e Department of Pharmaceutical Chemistry , Faculty of Pharmacy, University of Belgrade , Belgrade , Serbia
| | - Dragica Radojkovic
- c Institute of Molecular Genetics and Genetic Engineering, University of Belgrade , Belgrade , Serbia
| |
Collapse
|
5
|
Ghosh R, Rossner P, Honkova K, Dostal M, Sram RJ, Hertz-Picciotto I. Air pollution and childhood bronchitis: Interaction with xenobiotic, immune regulatory and DNA repair genes. ENVIRONMENT INTERNATIONAL 2016; 87:94-100. [PMID: 26655675 DOI: 10.1016/j.envint.2015.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/05/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Gene-environment interactions have been investigated for diseases such as asthma, chronic obstructive pulmonary disease, cancer etc. but acute disease like bronchitis has rarely been studied. We investigated interactions between air pollution (polycyclic aromatic hydrocarbons (PAH) and particulate matter <2.5 μm (PM2.5)) and single nucleotide polymorphisms (SNP) in EPHX1, IL10, STAT4 and XPC genes in relation to bronchitis in children aged 0-2 years. METHODS A stratified random sample of 1133 Czech children, born between 1994 and 1998 in two districts, were followed since birth, of which 626 were genotyped. Pediatrician-diagnosed bronchitis episodes were obtained from the medical records. Central-site monitors measured air pollution exposure. We used multivariable logistic regression and estimated coefficients using generalized estimating equations. Interaction was assessed between pollutants and genes and associations in genotype-specific strata were presented. False discovery rate was used to adjust for multiple comparisons. RESULTS There were 803 episodes of bronchitis with an incidence rate of 56 per 1000 child-months. We found significant gene-environment interaction between PAH and four SNPs (EPHX1, (rs2854461), STAT4 (rs16833215), XPC (rs2228001 and rs2733532)), which became non-significant after adjusting for multiple comparisons. PM2.5 interactions with two XPC SNPs (rs2228001 and rs2733532) remained significant after accounting for multiple comparisons and those with CC alleles had a more than doubling of odds, OR=2.65 (95% CI: 1.91, 3.69) and 2.72 (95% CI: 1.95, 3.78), respectively, per 25 μg/m(3) increase in exposure. CONCLUSION The findings suggest that the DNA repair gene XPC may play an important role in the air pollution-induced pathogenesis of the inflammatory disease bronchitis.
Collapse
Affiliation(s)
- Rakesh Ghosh
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States.
| | - Pavel Rossner
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Katerina Honkova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Miroslav Dostal
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Radim J Sram
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, United States
| |
Collapse
|
6
|
Systematic Review and Meta-Analysis of the Relationship between EPHX1 Polymorphisms and the Risk of Head and Neck Cancer. PLoS One 2015; 10:e0123347. [PMID: 25923690 PMCID: PMC4414537 DOI: 10.1371/journal.pone.0123347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 03/02/2015] [Indexed: 12/17/2022] Open
Abstract
Aim To evaluate the association between the EPHX1 Tyr113His and His139Arg polymorphisms in the EPHX1 gene and the risk of head and neck cancer. Materials and Methods Studies on the association of EPHX1 Tyr113His and His139Arg polymorphisms with HNC performed up until June 1st, 2014, were identified using a predefined search strategy. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were used to evaluate the strength of these associations. Results In this meta-analysis, 10 case-control studies, which included 9 studies of Tyr113His (1890 cases and 1894 controls) and 10 studies of His139Arg polymorphisms (1982 cases and 2024 controls), were considered eligible for inclusion. Overall, the pooled results indicated that the EPHX1 Tyr113His polymorphism was significantly associated with increased HNC risk (Tyr/His vs. Tyr/Tyr, OR = 1.26, 95%1.02–1.57;His/His+ Tyr/His vs. Tyr/Tyr, OR = 1.29, 95% I = 1.03–1.61). However, no significant association was found between the His139Arg polymorphism and HNC risk. In the subgroup analysis, a statistically significant association between the EPHX1 Tyr113His polymorphism and HNC was observed in population-based case-control studies (PCC), which involved less than 500 participants and genotype frequencies in HWE. This association showed minimal heterogeneity after excluding studies that were determined to contribute to heterogeneity. After categorizing the studies by publication time, a sensitivity analysis and cumulative meta-analysis of the two associations were conducted, and the results of the two analyses were consistent. Conclusion Our meta-analysis suggests that EPHX1 Tyr113His polymorphism may be a risk factor for HNC, while the EPHX1 His139Arg polymorphism has no association with HNC risk.
Collapse
|
7
|
Effects of EPHX1, SCN1A and CYP3A4 genetic polymorphisms on plasma carbamazepine concentrations and pharmacoresistance in Chinese patients with epilepsy. Epilepsy Res 2013; 107:231-7. [DOI: 10.1016/j.eplepsyres.2013.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 08/24/2013] [Accepted: 09/17/2013] [Indexed: 11/22/2022]
|
8
|
Zhong JH, Xiang BD, Ma L, You XM, Li LQ, Xie GS. Meta-analysis of microsomal epoxide hydrolase gene polymorphism and risk of hepatocellular carcinoma. PLoS One 2013; 8:e57064. [PMID: 23451147 PMCID: PMC3581564 DOI: 10.1371/journal.pone.0057064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/17/2013] [Indexed: 01/27/2023] Open
Abstract
Background Hepatocarcinogenesis is a complex process that may be influenced by many factors, including polymorphism in microsomal epoxide hydrolase (mEH). Previous work suggests an association between the Tyr113His and His139Arg mEH polymorphisms and susceptibility to hepatocellular carcinoma (HCC), but the results have been inconsistent. Methods PubMed, EMBASE, Google Scholar and the Chinese National Knowledge Infrastructure databases were systematically searched to identify relevant studies. A meta-analysis was performed to examine the association between Tyr113His and His139Arg mEH polymorphism and susceptibility to HCC. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. Results Eleven studies were included in the meta-analysis, involving 1,696 HCC cases and 3,600 controls. The 113His- mEH allele was significantly associated with increased risk of HCC based on allelic contrast (OR = 1.35, 95% CI = 1.04–1.75, p = 0.02), homozygote comparison (OR = 1.65, 95% CI = 1.07–2.54, p = 0.02) and a recessive genetic model (OR = 1.54, 95% CI = 1.21–1.96, p<0.001), while individuals carrying the Arg139Arg mEH genotype had no association with increased or decreased risk of HCC. Conclusion The 113His- allele polymorphism in mEH may be a risk factor for hepatocarcinogenesis, while the mEH 139Arg- allele may not be a risk or protective factor. There is substantial evidence that mEH polymorphisms interact synergistically with other genes and the environment to modulate risk of HCC. Further large and well-designed studies are needed to confirm these conclusions.
Collapse
Affiliation(s)
- Jian-Hong Zhong
- Hepatobiliary Surgery Department, Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Bang-De Xiang
- Hepatobiliary Surgery Department, Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Liang Ma
- Hepatobiliary Surgery Department, Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Xue-Mei You
- Hepatobiliary Surgery Department, Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Le-Qun Li
- Hepatobiliary Surgery Department, Tumor Hospital of Guangxi Medical University, Nanning, People’s Republic of China
- * E-mail:
| | - Gui-Sheng Xie
- General Surgery Department, The Third Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
9
|
Li H, Fu WP, Hong ZH. Microsomal epoxide hydrolase gene polymorphisms and risk of chronic obstructive pulmonary disease: A comprehensive meta-analysis. Oncol Lett 2012; 5:1022-1030. [PMID: 23426996 PMCID: PMC3576314 DOI: 10.3892/ol.2012.1099] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 12/18/2012] [Indexed: 11/05/2022] Open
Abstract
Microsomal epoxide hydrolase (EPHX1) is an enzyme involved in the detoxification the products of smoking and is proposed to be a genetic factor for the development of chronic obstructive pulmonary disease (COPD). Two functional polymorphisms of EPHX1, T113C and A139G, have been analyzed in numerous studies to assess the COPD risk attributed to these variants. However, the conclusions were controversial. We performed a comprehensive meta-analysis to clarify these findings. A total of 24 studies comprising 8,259 COPD patients and 42,883 controls were included. The overall results showed that the EPHX1 113 mutant homozygote was significantly associated with an increased risk of COPD (OR, 1.33; 95% CI, 1.06-1.69). The subgroup analyses demonstrated this association in Caucasian individuals (OR, 1.61; 95% CI, 1.12-2.31) but not in Asian individuals. The 139 mutant heterozygote was significantly associated with a decreased risk of COPD in Asian populations (OR, 0.82; 95% CI, 0.68-0.99) but not in Caucasian populations. Pooled analyses revealed that the extremely slow (OR, 1.77; 95% CI, 1.23-2.55) and slow EPHX1 enzyme activity (OR, 1.44; 95% CI, 1.13-1.85) were associated with an increased risk of COPD, while the fast enzyme activity was not associated with a decreased risk of COPD. The stratified analysis demonstrated this association in Caucasian but not in Asian individuals. Furthermore, a modest difference in the risk of COPD was observed between the subgroups by using the cigarette smokers or the non-smokers as controls. A significant correlation between the two functional polymorphisms, T113C and A139G, of the EPHX1 gene and the enzyme activity and the individual's susceptibility to COPD was noted. In addition, the results supported a contribution of EPHX1 to the aetiology of COPD.
Collapse
Affiliation(s)
- Hui Li
- Department of Genetics and Developmental Biology, Southeast University School of Medicine; Nanjing 210009; ; The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing 210009
| | | | | |
Collapse
|
10
|
Paiva RT, Saliba AM, Fulco TO, Sales JDS, de Carvalho DS, Sampaio EP, Lopes UG, Sarno EN, Nobre FF. A framework to identify gene expression profiles in a model of inflammation induced by lipopolysaccharide after treatment with thalidomide. BMC Res Notes 2012; 5:292. [PMID: 22695124 PMCID: PMC3434117 DOI: 10.1186/1756-0500-5-292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 05/30/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Thalidomide is an anti-inflammatory and anti-angiogenic drug currently used for the treatment of several diseases, including erythema nodosum leprosum, which occurs in patients with lepromatous leprosy. In this research, we use DNA microarray analysis to identify the impact of thalidomide on gene expression responses in human cells after lipopolysaccharide (LPS) stimulation. We employed a two-stage framework. Initially, we identified 1584 altered genes in response to LPS. Modulation of this set of genes was then analyzed in the LPS stimulated cells treated with thalidomide. RESULTS We identified 64 genes with altered expression induced by thalidomide using the rank product method. In addition, the lists of up-regulated and down-regulated genes were investigated by means of bioinformatics functional analysis, which allowed for the identification of biological processes affected by thalidomide. Confirmatory analysis was done in five of the identified genes using real time PCR. CONCLUSIONS The results showed some genes that can further our understanding of the biological mechanisms in the action of thalidomide. Of the five genes evaluated with real time PCR, three were down regulated and two were up regulated confirming the initial results of the microarray analysis.
Collapse
Affiliation(s)
- Renata T Paiva
- Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|