1
|
Lima BM, de Azevedo ALK, Giner IS, Gomig THB, Ribeiro EMDSF, Cavalli IJ. Biomarker potential of the LEF1/TCF family members in breast cancer: Bioinformatic investigation on expression and clinical significance. Genet Mol Biol 2023; 46:e20220346. [PMID: 38100720 PMCID: PMC10723634 DOI: 10.1590/1678-4685-gmb-2022-0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/18/2023] [Indexed: 12/17/2023] Open
Abstract
The LEF1/TCF transcription factor family is related to the development of diverse tissue types, including the mammary tissue, and dysregulation of its expression and function has been described to favor breast tumorigenesis. However, the clinical and biological relevance of this gene family in breast cancer is still poorly understood. Here, we used bioinformatics approaches aiming to reduce this gap. We investigated its expression patterns in molecular and immune breast cancer subtypes; its correlation with immune cell infiltration, and its prognostic values in predicting outcomes. Also, through regulons construction, we determined the genes whose expression is influenced by these transcription factors, and the pathways in which they are involved. We found that LEF1 and TCF3 are over-expressed in breast tumors regarding non-tumor samples, while TCF4 and TCF7 are down-expressed, with the gene's methylation status being associated with its expression dysregulation. All four transcription factors presented significance at the diagnostic and prognostic levels. LEF1, TCF4, and TCF7 presented a significant correlation with immune cell infiltration, being associated with the immune subtypes of less favorable outcomes. Altogether, this research contributes to a more accurate understanding of the expression and clinical and biomarker significance of the LEF1/TCF transcription factors in breast cancer.
Collapse
Affiliation(s)
- Beatriz Miotto Lima
- Universidade Federal do Paraná, Departamento de Genética,
Curitiba, Paraná, Brasil
| | | | - Igor Samesima Giner
- Universidade Federal do Paraná, Departamento de Genética,
Curitiba, Paraná, Brasil
| | | | | | - Iglenir João Cavalli
- Universidade Federal do Paraná, Departamento de Genética,
Curitiba, Paraná, Brasil
| |
Collapse
|
2
|
Ward BJH, Prasai K, Schaal DL, Wang J, Scott RS. A distinct isoform of lymphoid enhancer binding factor 1 (LEF1) epigenetically restricts EBV reactivation to maintain viral latency. PLoS Pathog 2023; 19:e1011873. [PMID: 38113273 PMCID: PMC10763950 DOI: 10.1371/journal.ppat.1011873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/03/2024] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
As a human tumor virus, EBV is present as a latent infection in its associated malignancies where genetic and epigenetic changes have been shown to impede cellular differentiation and viral reactivation. We reported previously that levels of the Wnt signaling effector, lymphoid enhancer binding factor 1 (LEF1) increased following EBV epithelial infection and an epigenetic reprogramming event was maintained even after loss of the viral genome. Elevated LEF1 levels are also observed in nasopharyngeal carcinoma and Burkitt lymphoma. To determine the role played by LEF1 in the EBV life cycle, we used in silico analysis of EBV type 1 and 2 genomes to identify over 20 Wnt-response elements, which suggests that LEF1 may bind directly to the EBV genome and regulate the viral life cycle. Using CUT&RUN-seq, LEF1 was shown to bind the latent EBV genome at various sites encoding viral lytic products that included the immediate early transactivator BZLF1 and viral primase BSLF1 genes. The LEF1 gene encodes various long and short protein isoforms. siRNA depletion of specific LEF1 isoforms revealed that the alternative-promoter derived isoform with an N-terminal truncation (ΔN LEF1) transcriptionally repressed lytic genes associated with LEF1 binding. In addition, forced expression of the ΔN LEF1 isoform antagonized EBV reactivation. As LEF1 repression requires histone deacetylase activity through either recruitment of or direct intrinsic histone deacetylase activity, siRNA depletion of LEF1 resulted in increased histone 3 lysine 9 and lysine 27 acetylation at LEF1 binding sites and across the EBV genome. Taken together, these results indicate a novel role for LEF1 in maintaining EBV latency and restriction viral reactivation via repressive chromatin remodeling of critical lytic cycle factors.
Collapse
Affiliation(s)
- B. J. H. Ward
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Kanchanjunga Prasai
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Danielle L. Schaal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Jian Wang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Rona S. Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| |
Collapse
|
3
|
Hou Y, Yu W, Wu G, Wang Z, Leng S, Dong M, Li N, Chen L. Carcinogenesis promotion in oral squamous cell carcinoma: KDM4A complex-mediated gene transcriptional suppression by LEF1. Cell Death Dis 2023; 14:510. [PMID: 37553362 PMCID: PMC10409759 DOI: 10.1038/s41419-023-06024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent cancer of the mouth, characterised by rapid progression and poor prognosis. Hence, an urgent need exists for the development of predictive targets for early diagnosis, prognosis determination, and clinical therapy. Dysregulation of lymphoid enhancer-binding factor 1 (LEF1), an important transcription factor involved in the Wnt-β-catenin pathway, contributes to the poor prognosis of OSCC. Herein, we aimed to explore the correlation between LEF1 and histone lysine demethylase 4 A (KDM4A). Results show that the KDM4A complex is recruited by LEF1 and specifically binds the LATS2 promoter region, thereby inhibiting its expression, and consequently promoting cell proliferation and impeding apoptosis in OSCC. We also established NOD/SCID mouse xenograft models using CAL-27 cells to conduct an in vivo analysis of the roles of LEF1 and KDM4A in tumour growth, and our findings show that cells stably suppressing LEF1 or KDM4A have markedly decreased tumour-initiating capacity. Overall, the results of this study demonstrate that LEF1 plays a pivotal role in OSCC development and has potential to serve as a target for early diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Yiming Hou
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Wenqian Yu
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, P. R. China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250022, China
- Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong, 250022, China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, Heilongjiang, 154007, China
| | - Zhaoling Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China
| | - Shuai Leng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, P. R. China
| | - Ming Dong
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, Heilongjiang, 154007, China
| | - Na Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250022, China.
- Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong, 250022, China.
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, Shandong, 250012, China.
| |
Collapse
|
4
|
Mauro-Lizcano M, Sotgia F, Lisanti MP. SOX2-high cancer cells exhibit an aggressive phenotype, with increases in stemness, proliferation and invasion, as well as higher metabolic activity and ATP production. Aging (Albany NY) 2022; 14:9877-9889. [PMID: 36566021 PMCID: PMC9831729 DOI: 10.18632/aging.204452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSCs) are responsible for cancer recurrence, treatment failure and metastatic dissemination. As such, the elimination of CSCs represents one of the most important approaches for the future of cancer treatment. Among other properties, CSCs show the activation of particular cell signalling pathways and the over-expression of certain transcription factors, such as SOX2. Herein, we describe a new model system to isolate stem-like cancer cells, based on the functional transcriptional activity of SOX2. Briefly, we employed a SOX2-enhancer-GFP-reporter system to isolate cancer cells with high SOX2 transcriptional activity by FACS sorting. The over-expression of SOX2 in this sub-population was validated by Western blot analysis and flow cytometry. SOX2-high cancer cells showed CSCs features, such as greater mammosphere forming ability, validating that this sub-population was enriched in CSCs. To further explore the model, we analysed other stemness characteristics in MCF7 and MDA-MB-231 breast cancer cell lines, corroborating that SOX2-high cells were more metabolically active, proliferative, migratory, invasive, and drug-resistant. SOX2-high MDA-MB-231 cells also showed a loss of E-cadherin expression, and increased Vimentin expression, consistent with an epithelial-mesenchymal transition (EMT). Therefore, endogenous SOX2 transcriptional activity and protein levels are mechanistically linked to aggressive phenotypic behaviours and energy production in CSCs.
Collapse
Affiliation(s)
- Marta Mauro-Lizcano
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
5
|
Zhou X, Li X, Wang R, Hua D, Sun C, Yu L, Shi C, Luo W, Jiang Z, An W, Wang Q, Yu S. Recruitment of LEF1 by Pontin chromatin modifier amplifies TGFBR2 transcription and activates TGFβ/SMAD signalling during gliomagenesis. Cell Death Dis 2022; 13:818. [PMID: 36153326 PMCID: PMC9509381 DOI: 10.1038/s41419-022-05265-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 01/23/2023]
Abstract
Synergies of transcription factors, chromatin modifiers and their target genes are vital for cell fate determination in human cancer. Although the importance of numerous epigenetic machinery for regulating gliomagenesis has been previously recognized, how chromatin modifiers collaborate with specific transcription factors remains largely elusive. Herein we report that Pontin chromatin remodelling factor acts as a coactivator for LEF1 to activate TGFβ/SMAD signalling, thereby contributing to gliomagenesis. Pontin is highly expressed in gliomas, and its overexpression paralleled the grade elevation and poor prognosis of patients. Functional studies verified its oncogenic roles in GBM cells by facilitating cell proliferation, survival and invasion both in vitro and in vivo. RNA sequencing results revealed that Pontin regulated multiple target genes involved in TGFβ/SMAD signalling. Intriguingly, we found that Pontin amplified TGFβR2 gene transcription by recruiting LEF1, thereby activating TGFβ/SMAD signalling and facilitating gliomagenesis. Furthermore, higher TGFβR2 expression conferred worse patient outcomes in glioma. To conclude, our study revealed that the Pontin-LEF1 module plays a crucial role in driving TGFβR2 gene transcription, which could be exploited to target TGFβ/SMAD signalling for anti-glioma therapy.
Collapse
Affiliation(s)
- Xuexia Zhou
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China.
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China.
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China.
| | - Xuebing Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Run Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Dan Hua
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Cuiyun Sun
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Lin Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences of Tianjin Medical University, 300070, Tianjin, China
| | - Cuijuan Shi
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Wenjun Luo
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Zhendong Jiang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Wenzhe An
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Qian Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China
| | - Shizhu Yu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, 300052, Tianjin, China.
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, 300052, Tianjin, China.
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, 300052, Tianjin, China.
| |
Collapse
|
6
|
Dolezal D, Zhang X, Harigopal M. Increased Expression of LEF1 and β-Catenin in Invasive Micropapillary Carcinoma of the Breast is Associated With Lymphovascular Invasion and Lymph Node Metastasis. Appl Immunohistochem Mol Morphol 2022; 30:557-565. [PMID: 35960138 DOI: 10.1097/pai.0000000000001052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/09/2022] [Indexed: 11/26/2022]
Abstract
Invasive micropapillary breast carcinoma (IMPC) is a rare breast cancer subtype characterized by small tumor cell clusters with loss of stromal attachment, an inside-out growth appearance, and lymphotropism. IMPC is associated with high incidence of lymphovascular invasion (LVI) and lymph node metastasis. Activated Wnt signaling has been implicated in the metastasis of other aggressive breast tumors, including triple-negative and basal-like carcinomas. In this study, we tested whether activated Wnt signaling could be detected in IMPC. Upon ligand binding, the central mediator of the Wnt pathway, β-catenin, accumulates in the cytosol and translocates to the nucleus where it forms a complex with lymphoid enhancer-binding factor 1 (LEF1) to regulate transcription. We performed immunostaining for β-catenin and LEF1 on a well-annotated cohort of 40 breast tumors and nodal metastases displaying micropapillary histopathology. Strong nuclear accumulation of β-catenin was not observed, however a dim cytosolic and/or nuclear accumulation of β-catenin was sometimes seen in IMPC and this expression pattern was significantly associated with nodal metastasis. β-catenin expression correlated with the upregulation of LEF1 in IMPC. LEF1 expression was detected in 26 of 40 (65%) cases and was specifically enriched at the invasive front of the tumor and in tumor clusters undergoing LVI. Detection of LEF1 expression in the primary tumor was associated with an increased rate of LVI, lymph node metastasis, and disease relapse. LEF1 and β-catenin expression levels were significantly higher in metastases compared with primary tumors. In summary, this study demonstrates an association between the upregulation of β-catenin/LEF1 and the metastasis of IMPC.
Collapse
Affiliation(s)
- Darin Dolezal
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA 06510
| | | | | |
Collapse
|
7
|
Isoorientin inhibits epithelial-to-mesenchymal properties and cancer stem-cell-like features in oral squamous cell carcinoma by blocking Wnt/β-catenin/STAT3 axis. Toxicol Appl Pharmacol 2021; 424:115581. [PMID: 34019859 DOI: 10.1016/j.taap.2021.115581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 01/22/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is among the most prevalent cancers of the head and neck. This study revealed that isoorientin attenuates OSCC cell stemness and epithelial-mesenchymal transition potential through the inhibition of JAK/signal transducer and activator of transcription 3 (STAT3) and Wnt/β-catenin signaling in cell lines. Our findings indicated that isoorientin is a potential inhibitor of β-catenin/STAT3 in vitro and in vivo. We analyzed possible synergism between isoorientin and cisplatin in OSCC. A sulforhodamine B assay, colony formation assay, tumorsphere-formation assay, and Wnt reporter activity assay were used for determining cell invasion, cell migration, drug cytotoxicity, and cell viability with potential molecular mechanisms in vitro. Isoorientin reduced the expression of p-STAT3, β-catenin, and p-GSK3 as well as downstream effectors TCF1/TCF7 and LEF1 and significantly reduced β-catenin colocalization in the nucleus. Isoorientin markedly strengthened the cytotoxic effects of cisplatin against SAS and SCC-25. Therefore, combining isoorientin and cisplatin treatments can potentially improve the anticancer effect of cisplatin. Isoorientin inhibited the tumorigenicity and growth of OSCC through the abrogation of Wnt/β-catenin/STAT3 signaling in vivo. Thus, isoorientin disrupted the β-catenin signaling pathway through the inactivation of STAT3 signaling. In conclusion, targeting OSCC-SC-mediated stemness with isoorientin to eradicate OSCC-SCs may be an effective strategy for preventing relapse and metastasis of OSCC and providing long-term survival benefits.
Collapse
|
8
|
High expression of LEF1 correlates with poor prognosis in solid tumors, but not blood tumors: a meta-analysis. Biosci Rep 2021; 40:226206. [PMID: 32856045 PMCID: PMC7468095 DOI: 10.1042/bsr20202520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Previously published studies have indicated that lymphoid enhancer-binding factor 1 (LEF1) expression could be recognized as a valuable biomarker to evaluate clinical outcome for various types of malignant cancer, but the results remained controversial. Therefore, we conducted this meta-analysis to pool the published estimates and discuss the relationship of LEF1 expression with cancer prognosis. METHODS Five electronic databases Pubmed, Web of Science, Embase, CNKI, and Wanfang were systematically searched for eligible literatures. Hazard ratios (HRs) and 95% confidence intervals (CIs) from the included studies were combined to estimate the effect of LEF1 expression on cancer patients' survival. RESULTS Eleven original studies met the criteria and were enrolled for analysis. The results indicated that compared with patients in low LEF1 expression group, patients in high LEF1 expression group tended to have shorter overall survival (HR = 1.74, 95% CI: 1.06-2.86, P=0.029), especially for patients with solid tumors (HR = 2.39, 95% CI: 1.86-3.08, P=0.000). CONCLUSIONS Individual evidence about the prognostic value of LEF1 expression in human cancers was limited. Our meta-analysis supported the suggestion that elevated LEF1 expression could function as a promising biomarker to predict the clinical outcomes for malignant cancers, especially solid tumors. More high-quality clinical studies are warranted to highlight the prognostic value of LEF1 expression in human cancers.
Collapse
|
9
|
Shetty SS, Sharma M, Fonseca FP, Jayaram P, Tanwar AS, Kabekkodu SP, Kapaettu S, Radhakrishnan R. Signaling pathways promoting epithelial mesenchymal transition in oral submucous fibrosis and oral squamous cell carcinoma. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:97-108. [PMID: 32874377 PMCID: PMC7452314 DOI: 10.1016/j.jdsr.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a critical process that occurs during the embryonic development, wound healing, organ fibrosis and the onset of malignancy. Emerging evidence suggests that the EMT is involved in the invasion and metastasis of cancers. The inflammatory reaction antecedent to fibrosis in the onset of oral submucous fibrosis (OSF) and the role of EMT in its malignant transformation indicates a hitherto unexplored involvement of EMT. This review focuses on the role of EMT markers which are regulators of the EMT mediated complex network of molecular mechanisms involved in the pathogenesis of OSF and OSCC. Further the gene enrichment analysis and pathway analysis supports the association of the upregulated and downregulated genes in various EMT regulating pathways.
Collapse
Affiliation(s)
- Smitha Sammith Shetty
- Department of Oral Pathology, Faculty of Dentistry, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| | - Mohit Sharma
- Department of Oral Pathology, Sudha Rustagi College of Dental Sciences and Research, Faridabad 121004, India
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ankit Singh Tanwar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Satyamoorthy Kapaettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
- Corresponding author.
| |
Collapse
|
10
|
Paluszczak J. The Significance of the Dysregulation of Canonical Wnt Signaling in Head and Neck Squamous Cell Carcinomas. Cells 2020; 9:cells9030723. [PMID: 32183420 PMCID: PMC7140616 DOI: 10.3390/cells9030723] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 01/02/2023] Open
Abstract
The knowledge about the molecular alterations which are found in head and neck squamous cell carcinomas (HNSCC) has much increased in recent years. However, we are still awaiting the translation of this knowledge to new diagnostic and therapeutic options. Among the many molecular changes that are detected in head and neck cancer, the abnormalities in several signaling pathways, which regulate cell proliferation, cell death and stemness, seem to be especially promising with regard to the development of targeted therapies. Canonical Wnt signaling is a pathway engaged in the formation of head and neck tissues, however it is not active in adult somatic mucosal cells. The aim of this review paper is to bring together significant data related to the current knowledge on the mechanisms and functional significance of the dysregulation of the Wnt/β-catenin pathway in head and neck tumors. Research evidence related to the role of Wnt signaling activation in the stimulation of cell proliferation, migration and inhibition of apoptosis in HNSCC is presented. Moreover, its role in promoting stemness traits in head and neck cancer stem-like cells is described. Evidence corroborating the hypothesis that the Wnt signaling pathway is a very promising target of novel therapeutic interventions in HNSCC is also discussed.
Collapse
Affiliation(s)
- Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Swiecickiego 4, 60-781 Poznan, Poland
| |
Collapse
|
11
|
Joshi S, De Angelis PM, Zucknick M, Schjølberg AR, Andersen SN, Clausen OPF. Role of the Wnt signaling pathway in keratoacanthoma. Cancer Rep (Hoboken) 2019; 3:e1219. [PMID: 32672002 DOI: 10.1002/cnr2.1219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Keratoacanthoma (KA) has a unique life cycle of rapid growth and spontaneous regression that shows similarities to the hair follicle cycle, which involves an active Wnt signaling during physiological regeneration. We analyzed the expression of the Wnt signaling proteins β-catenin, Lef1, Sox9, and Cyclin D1 in young and old human KAs to investigate a possible role for Wnt signaling in KAs. AIM To investigate the role of the Wnt/β-catenin signaling pathway in human KAs. METHODS AND RESULTS Formalin-fixed, paraffin-embedded tissue samples of 67 KAs were analyzed for protein expression using immunohistochemistry. The majority of KAs were positive for Sox9 and Cyclin D1 but not for nuclear-localized β-catenin or Lef-1. No significant differences in protein expressions were seen between young and old KAs. However, we found a significant association between Ki67 and Cyclin D1 proteins (P= .008). CONCLUSIONS The Wnt signaling pathway does not appear to play a significant role in the biogenesis of human KA. Sox9 overexpression may be indicative of inhibition of Wnt signaling. Sox-9 and Cyclin D1 are proliferation markers that are most likely transactivated by alternate signaling pathways.
Collapse
Affiliation(s)
- Sarita Joshi
- Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Paula M De Angelis
- Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Manuela Zucknick
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Aasa R Schjølberg
- Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Solveig Norheim Andersen
- Institute of Clinical Medicine, Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | | |
Collapse
|
12
|
Zhao Y, Zhu J, Shi B, Wang X, Lu Q, Li C, Chen H. The transcription factor LEF1 promotes tumorigenicity and activates the TGF-β signaling pathway in esophageal squamous cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:304. [PMID: 31296250 PMCID: PMC6625065 DOI: 10.1186/s13046-019-1296-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/25/2019] [Indexed: 12/28/2022]
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is the most difficult subtype of esophageal cancer to treat due to the paucity of effective targeted therapy. ESCC is believed to arise from cancer stem cells (CSCs) that contribute to metastasis and chemoresistance. Despite advances in diagnosis and treatment, the prognosis of ESCC patients remains poor. Methods In this study, we applied western blot, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry, RNA-Seq analysis, luciferase reporter assay, Chip-qPCR, bioinformatics analysis, and a series of functional assays to show the potential role of LEF1 in regulating esophageal CSCs. Results We found that the overexpression of LEF1 was associated with aberrant clinicopathological characteristics and the poor prognosis of ESCC patients. In addition, the elevated expression of LEF1 and OV6 was significantly associated with aberrant clinicopathological features, and poor patient prognosis. Moreover, the overexpression of LEF1 was observed in esophageal CSCs purified by the magnetic sorting of adherent and spheroidal ESCC cells. The increased level of LEF1 in CSCs facilitated the expression of CSC markers, stem cell-like properties, resistance to chemotherapy, and tumorigenicity and increased the percentage of CSCs in ESCC samples. Conversely, the knockdown of LEF1 significantly diminished the self-renewal properties of ESCC. We showed that LEF1 played an important mechanical role in activating the TGF-β signaling pathway by directly binding to the ID1 gene promoter. A positive association between LEF1 and ID1 expression was also observed in clinical ESCC samples. Conclusion Our results indicate that the overexpression of LEF1 promotes a CSC-like phenotype in and the tumorigenicity of ESCC by activating the TGF-β signaling pathway. The inhibition of LEF1 might therefore be a novel therapeutic target to inactivate CSCs and inhibit tumor progression. Electronic supplementary material The online version of this article (10.1186/s13046-019-1296-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Ji Zhu
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Bowen Shi
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Xinyu Wang
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Qijue Lu
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Chunguang Li
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Hezhong Chen
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
13
|
Zhan Y, Feng J, Lu J, Xu L, Wang W, Fan S. Expression of LEF1 and TCF1 (TCF7) proteins associates with clinical progression of nasopharyngeal carcinoma. J Clin Pathol 2019; 72:425-430. [DOI: 10.1136/jclinpath-2019-205698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/24/2022]
Abstract
AimsOur previous study has demonstrated that β-catenin pathway was abnormally activated in nasopharyngeal carcinoma (NPC). The purposes of the present study are to investigate whether the alterations of LEF1 and TCF1 (TCF7) proteins, the important components of the canonical Wnt/β-catenin pathway, are associated with clinicopathological features and prognostic implications.MethodsWe collected 391 cases of NPC, 53 non-cancerous control nasopharyngeal mucosa and 28 pairs of NPC and their matched metastases, detected expression of LEF1 and TCF1 (TCF7) proteins in these tissues by immunohistochemistry. ResultsResults showed that there were significantly increased expression of both LEF1 and TCF1 (TCF7) proteins and coexpression of LEF1 and TCF1 (TCF7) in NPC than these in non-cancerous nasopharyngeal mucosa (all p<0.001), as well as LEF1 and coexpression of LEF1 and TCF1 (TCF7) in matched metastasis NPCs than these in the primary NPCs (p=0.003 and p=0.014, respectively). In addition, expression of LEF1 and the coexpression of LEF1 and TCF1 (TCF7) proteins were positively correlated with lymph node metastasis (p=0.001 and p=0.020, respectively), advanced clinical stage (p<0.003 and p=0.027, respectively) and poor survival status of patients with NPC (p<0.001 and p=0.004, respectively). Moreover, multivariate Cox regression analysis identified that the positive expression of LEF1 was the independent poor prognostic factor for overall survival of patients with NPC (p<0.001).ConclusionsThe expression of LEF1 associated positively with TCF1 (TCF7) and clinical progression of NPC, and positive expression of LEF1 protein may act as valuable independent biomarker to predict poor prognosis for patients with NPC.
Collapse
|
14
|
Gao D, Chen HQ. Specific knockdown of HOXB7 inhibits cutaneous squamous cell carcinoma cell migration and invasion while inducing apoptosis via the Wnt/β-catenin signaling pathway. Am J Physiol Cell Physiol 2018; 315:C675-C686. [PMID: 30067384 DOI: 10.1152/ajpcell.00291.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metastatic cutaneous squamous cell carcinoma (CSCC) is a major cause of death associated with nonmelanoma skin cancer. The involvement of homeobox B7 ( HOXB7) in cancers has been reported. Thus, the current study intends to explore the effect of HOXB7 on CSCC and its relationship with the Wnt/β-catenin signaling pathway. Initially, microarray-based gene expression profiling of CSCC was performed, and HOXB7 was identified as an upregulated gene based on the microarray data of GSE66359 . Following this, the experimental results indicated that HOXB7 and β-catenin formed a composite, demonstrating that endogenous HOXB7 binds to β-catenin. Subsequently, CSCC cells were treated with siRNA against HOXB7 or an inhibitor of the Wnt/β-catenin signaling pathway to analyze any underlying regulatory mechanism of HOXB7 on the CSCC cells. Tumor growth involving xenografts in nude mice was also observed so as to explore whether or not HOXB7 could regulate subcutaneous tumor growth through in vivo culturing. To investigate the potential effects of HOXB7 on the Wnt/β-catenin signaling pathway, we determined the expression of HOXB7 and downstream genes of the Wnt/β-catenin signaling pathway. Notably, siRNA-mediated knockdown of HOXB7 inhibited the activation of the Wnt/β-catenin signaling pathway, thereby impeding the progression of cell viability, migration, and invasion as well as of the tumor growth, although contrarily facilitating cell apoptosis. Taken together, silencing of the HOXB7 has the mechanism of inactivating the Wnt/β-catenin signaling pathway, thereby accelerating cell apoptosis and suppressing cell migration and invasion in CSCC, which could provide a candidate target for the CSCC treatment.
Collapse
Affiliation(s)
- Dong Gao
- Department of Dermatology, Yantai Yu Huang Ding Hospital, Yantai, People’s Republic of China
| | - Hong-Quan Chen
- Department of Dermatology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
15
|
The anti-apoptotic PON2 protein is Wnt/β-catenin-regulated and correlates with radiotherapy resistance in OSCC patients. Oncotarget 2018; 7:51082-51095. [PMID: 27322774 PMCID: PMC5239460 DOI: 10.18632/oncotarget.9013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/07/2016] [Indexed: 12/12/2022] Open
Abstract
Aberrant Wnt signaling and control of anti-apoptotic mechanisms are pivotal features in different types of cancer to undergo cell death programs. The intracellular human enzyme Paraoxonase-2 (PON2) is known to have anti-apoptotic properties in leukemia and oral squamous cell cancer (OSCC) cells. However, the distinct regulating pathways are poorly understood. First, we present a so far unknown regulation of PON2 protein expression through the Wnt/GSK3β/β-catenin pathway in leukemia and OSCC cells. This was confirmed via in silico analysis, promoter reporter studies and treatment of multiple cell lines (K562, SCC-4, PCI-13) with different Wnt ligands/inhibitors in vitro. Ex vivo analysis of OSCC patients revealed a correlation between PON2 and β-catenin expression in tumor tissue. Higher PON2 expression in OSCC is associated with relapse independently of treatment (e.g. surgery/radio-/chemotherapy). These results emphasize the clinical impact of the newly described regulation of PON2 through Wnt/GSK3β/β-catenin. More importantly, the study revealed the fundamental finding of an overall Wnt/GSK3β/β-catenin dependent regulation of PON2 in different cancers, which was confirmed by systematic and multimethodological approaches. Thus, the herein presented mechanistic insight contributes to a better understanding of tumor specific escape from cell death strategies and suggests PON2 as a new potential biomarker for therapy resistance or as a prognostic tumor marker.
Collapse
|
16
|
Schmitt AC, Griffith CC, Cohen C, Siddiqui MT. LEF-1: Diagnostic utility in distinguishing basaloid neoplasms of the salivary gland. Diagn Cytopathol 2017; 45:1078-1083. [PMID: 28972308 DOI: 10.1002/dc.23820] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/03/2017] [Accepted: 09/08/2017] [Indexed: 11/08/2022]
Abstract
BACKGROUND Lymphoid enhancer binding factor 1 (LEF-1) has recently been reported as a potential immunohistochemical (IHC) marker for basal cell adenoma (BCA) and other salivary gland tumors, which may contribute to an increased accuracy in differentiating basaloid salivary gland neoplasms. We evaluated the utility of LEF-1 in fine needle aspiration (FNA) and resection specimens to distinguish pleomorphic adenoma (PA), BCA, basal cell adenocarcinoma (BCAC), and adenoid cystic carcinoma (ACC) as well as in non-neoplastic salivary gland (NNSG). METHODS Cases including 66 PA (35 FNA, 31 resections), 12 BCA (5 FNA, 7 resections), 42 ACC (11 FNA, 31 resections), 1 BCAC FNA, and 10 NNSG (5 FNA, 5 resections) were obtained and stained for LEF-1. RESULTS On cell block (CB), 51% of PA and 60% of BCA were LEF-1 positive while 91% of ACC were LEF-1 negative. Among resections, there was a higher percentage of LEF-1 positive PA (84%) and BCA (86%), and a higher percentage of LEF-1 negative ACC (97%). LEF-1 staining had a low to moderate sensitivity for detecting benign basaloid neoplasms on FNA CB and resection specimens (52.5% and 84%, respectively), but a higher specificity (92% and 97% respectively), and positive predictive value (95% and 97% respectively). CONCLUSION When comparing benign (PA and BCA) and the most common malignant basaloid salivary gland tumor (ACC), positive LEF-1 favors a benign neoplasm. Additional studies with LEF-1, specifically including other rare basaloid salivary gland neoplasms are needed to further clarify the role of LEF-1 in diagnosing these lesions on FNA.
Collapse
Affiliation(s)
| | | | - Cynthia Cohen
- Emory University School of Medicine, Pathology, Atlanta, Georgia
| | - Momin T Siddiqui
- Emory University School of Medicine, Pathology, Atlanta, Georgia
| |
Collapse
|
17
|
Griffith CC, Siddiqui MT, Schmitt AC. Ancillary testing strategies in salivary gland aspiration cytology: A practical pattern-based approach. Diagn Cytopathol 2017; 45:808-819. [DOI: 10.1002/dc.23715] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/22/2017] [Accepted: 03/14/2017] [Indexed: 02/04/2023]
|
18
|
Oh KY, Hong KO, Huh YS, Lee JI, Hong SD. Decreased expression of SOX7 induces cell proliferation and invasion and correlates with poor prognosis in oral squamous cell carcinoma. J Oral Pathol Med 2017; 46:752-758. [DOI: 10.1111/jop.12566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Kyu-Young Oh
- Department of Oral Pathology; School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| | - Kyoung-Ok Hong
- Center for Gastric Cancer; National Cancer Center; Goyang Korea
| | - Young-Sung Huh
- Department of Oral Pathology; School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| | - Jae-Il Lee
- Department of Oral Pathology; School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| | - Seong-Doo Hong
- Department of Oral Pathology; School of Dentistry and Dental Research Institute; Seoul National University; Seoul Korea
| |
Collapse
|