1
|
Chen Y, Xiang Y, Miao X, Kuai L, Ding X, Ma T, Li B, Fan B. METTL14 promotes IL-6-induced viability, glycolysis and inflammation in HaCaT cells via the m6A modification of TRIM27. J Cell Mol Med 2024; 28:e18085. [PMID: 38146129 PMCID: PMC10844716 DOI: 10.1111/jcmm.18085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023] Open
Abstract
Interleukin-6 (IL-6) is a cytokine generated by healthy constituents of the skin, but is also up-regulated by a wide range of skin lesions and inflammatory conditions to trigger cytopathy of skin cells. TRIM27 was identified to contribute to the functional effects of IL-6 on skin cells. However, the underlying mechanism was not clear. Lentivirus infection was used for gene overexpression or silencing. RT-PCR and Western blot were used to respectively assess mRNA and protein levels. Cell viability was assessed by CCK-8 assay. Extracellular flux analysis was used to assess the levels of oxygen consumption rate and extracellular acidification rate. Mouse back skin was treated with imiquimod to produce psoriasis-like inflammation in vivo. Histological assessment and immunohistochemistry staining were respectively applied to analyse lesioned mouse and human skin samples. IL-6-induced increased viability, glycolysis and inflammation in keratinocytes was inhibited both by a chemical methylation inhibitor and by METTL14 knockdown. Further investigation found that METTL14 induces m6A methylation of TRIM27, which is recognized by a m6A reader, IGF2BP2. Elevation of TRIM27 level and activation of IL-6/STAT3 signalling pathway were found in an in vivo psoriasis-like inflammation model, whereas inhibition m6A methylation strongly alleviated the inflammation. Finally, METTL14, TRIM27, STAT3, p-STAT3 and IL-6 expressions were all found to be increased in clinical skin samples of psoriatic patients. Our results unravelled METTL14/TRIM27/IGF2BP2 signalling axis in keratinocyte cytopathy, which plays a critical role in facilitating the activation of IL-6/STAT3 signalling pathway. Our findings should provide inspirations for the design of new therapeutics for skin inflammatory diseases including psoriasis.
Collapse
Affiliation(s)
- Yiran Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yanwei Xiang
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiao Miao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Innovation Research Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiaojie Ding
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Tian Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Shanghai Skin Disease Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Bin Fan
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
2
|
Lu Q, Wang Y, Jiang X, Huang S. miR-584-5p Inhibits Osteosarcoma Progression by Targeting Connective Tissue Growth Factor. Cancer Biother Radiopharm 2023; 38:632-640. [PMID: 35041486 DOI: 10.1089/cbr.2021.0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: miR-584-5p is a critical regulator in the progression of multiple cancers. However, its specific role and downstream targets in osteosarcoma are unclear. This research investigated the roles and underlying mechanisms of miR-769-5p and the Hippo pathway in osteosarcoma cells. Materials and Methods: RT-qPCR, CCK-8 and EdU and colony formation, wound-healing and transwell chamber, flow cytometry, and Western blot assay detected the expression of miR-584-5p and CTGF, cell proliferation, migration, invasion apoptosis and protein expression. Result: Their study illuminated that miR-584-5p overexpression repressed osteosarcoma cell migration/invasion and proliferation and facilitated apoptosis. Mechanistically, miR-584-5p targets negatively regulated connective tissue growth factor (CTGF). miR-584-5p inhibited osteosarcoma cell metastasis by regulating CTGF. In addition, miR-584-5p inactivated the Hippo pathway through CTGF in osteosarcoma. Conclusion: miR-584-5p inhibits osteosarcoma cell proliferation, migration, and invasion and promotes apoptosis by targeting CTGF, indicating that miR-584-5p acts as a promising diagnostic and predictive biomarker for osteosarcoma.
Collapse
Affiliation(s)
- Qian Lu
- Department of Orthopaedic Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang, China
| | - Yongli Wang
- Department of Orthopaedic Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang, China
| | - Xuesheng Jiang
- Department of Orthopaedic Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang, China
| | - Sheng Huang
- Department of Orthopaedic Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, Zhejiang, China
| |
Collapse
|
3
|
Zheng Z, Wang X, Chen D. Proteasome inhibitor MG132 enhances the sensitivity of human OSCC cells to cisplatin via a ROS/DNA damage/p53 axis. Exp Ther Med 2023; 25:224. [PMID: 37123203 PMCID: PMC10133788 DOI: 10.3892/etm.2023.11924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2023] Open
Abstract
Cis-diamine-dichloroplatinum II (cisplatin, CDDP) is a key chemotherapeutic regimen in the treatment of oral squamous cell carcinoma (OSCC). However, the therapeutic efficacy of cisplatin in OSCC may be hampered by chemoresistance. Therefore, the development of novel combination therapy strategies to overcome the limitations of CDDP is of great importance. The proteasome inhibitor MG132 exhibits anti-cancer properties against various types of cancer. However, our knowledge of its anti-cancer effects in combination with CDDP in OSCC cells remains limited. In the current study, the synergetic effects of MG132 and CDDP were evaluated in the human CAL27 OSCC cell line. CAL27 cells were treated with CDDP alone or in combination with MG132. The results showed that MG132 significantly reduced cell viability in a dose-dependent manner. Additionally, cell viability was significantly reduced in CAL27 cells treated with 0.2 µM MG132 and 2 µM CDDP compared with cells treated with MG132 or CDDP alone. In addition, MG132 significantly enhanced the CDDP-induced generation of intracellular reactive oxygen species and DNA damage in OSCC cells. Furthermore, treatment with CDDP or MG132 alone notably inhibited colony formation and proliferation of OSCC cells. However, co-treatment of OSCC cells with MG132 and CDDP further hampered colony formation and proliferation compared with cells treated with either MG132 or CDDP alone. Finally, in cells co-treated with MG132 and CDDP, the expression of p53 was markedly elevated and the p53-mediated apoptotic pathway was further activated compared with cells treated with MG132 or CDDP alone, as shown by the enhanced cell apoptosis, Bax upregulation, and Bcl-2 downregulation. Overall, the results of the current study support the synergistic anti-cancer effects of a combination of MG132 and CDDP against OSCC, thus suggesting that the combination of MG132 and CDDP may be a promising therapeutic strategy for the management of OSCC.
Collapse
Affiliation(s)
- Zheng Zheng
- Department of Stomatology, The First People's Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Xiang Wang
- Department of Stomatology, The First People's Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226000, P.R. China
- Correspondence to: Dr Donglei Chen or Dr Xiang Wang, Department of Stomatology, The First People's Hospital of Nantong, Affiliated Hospital 2 of Nantong University, 6 Haierxiang Road, Nantong, Jiangsu 226000, P.R. China
| | - Donglei Chen
- Department of Stomatology, The First People's Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226000, P.R. China
- Correspondence to: Dr Donglei Chen or Dr Xiang Wang, Department of Stomatology, The First People's Hospital of Nantong, Affiliated Hospital 2 of Nantong University, 6 Haierxiang Road, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
4
|
Bai J, Wu L, Wang X, Wang Y, Shang Z, Jiang E, Shao Z. Roles of Mitochondria in Oral Squamous Cell Carcinoma Therapy: Friend or Foe? Cancers (Basel) 2022; 14:cancers14235723. [PMID: 36497206 PMCID: PMC9738284 DOI: 10.3390/cancers14235723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) therapy is unsatisfactory, and the prevalence of the disease is increasing. The role of mitochondria in OSCC therapy has recently attracted increasing attention, however, many mechanisms remain unclear. Therefore, we elaborate upon relative studies in this review to achieve a better therapeutic effect of OSCC treatment in the future. Interestingly, we found that mitochondria not only contribute to OSCC therapy but also promote resistance, and targeting the mitochondria of OSCC via nanoparticles is a promising way to treat OSCC.
Collapse
Affiliation(s)
- Junqiang Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Luping Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Xinmiao Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Yifan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Correspondence: (E.J.); (Z.S.); Tel.: +86-27-87686215 (E.J. & Z.S.)
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430089, China
- Correspondence: (E.J.); (Z.S.); Tel.: +86-27-87686215 (E.J. & Z.S.)
| |
Collapse
|
5
|
Qian J, Wan W, Fan M. HMOX1 silencing prevents doxorubicin-induced cardiomyocyte injury, mitochondrial dysfunction, and ferroptosis by downregulating CTGF. Gen Thorac Cardiovasc Surg 2022; 71:280-290. [PMID: 36008747 DOI: 10.1007/s11748-022-01867-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/14/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Doxorubicin is a type of effective antitumor drug but can contribute to cardiomyocyte injuries. We aimed to dissect the mechanism of the HMOX1/CTGF axis in DOX-induced cardiomyocyte injury, mitochondrial dysfunction, and ferroptosis. METHODS Bioinformatics analysis was conducted to retrieve differentially expressed genes in a DOX-induced mouse model. Mouse cardiomyocytes, HL-1 cells, were induced with l µM DOX, after which gain- or loss-of-function assays were applied. CCK-8, fluorescent probe assay, flow cytometry, and corresponding kits were employed to detect cell viability, ROS levels, mitochondrial membrane potential and cell apoptosis, and GSH and Fe2+ contents, respectively. qRT-PCR or Western blot assay was adopted to test HMOX1, CTGF, BCL-2, Caspase3, Cleaved-Caspase3, and GPX4 expression. RESULTS Bioinformatics analysis showed that HMOX1 and CTGF were highly expressed in DOX-induced mice and correlated with each other. Also, HMOX1 and CTGF expression was high in HL-1 cells after DOX treatment, along with an obvious decrease in cell viability and GSH and GPX4 expression, an increase in ROS levels, apoptosis, and Fe2+ contents, and mitochondrial membrane potential dysfunction or loss. HMOX1 or CTGF silencing diminished cell apoptosis, Cleaved-Caspase3 expression, Fe2+ contents, and ROS levels, enhanced cell viability and the expression of GSH, GPX4, and BCL-2, and recovered mitochondrial membrane potential in DOX-induced HL-1 cells. Nevertheless, the effects of HMOX1 silencing on the viability, apoptosis, ferroptosis, and mitochondrial dysfunction of DOX-induced HL-1 cells were counteracted by CTGF overexpression. CONCLUSIONS In conclusion, HMOX1 silencing decreased CTGF expression to alleviate DOX-induced injury, mitochondrial dysfunction, and ferroptosis of mouse cardiomyocytes.
Collapse
Affiliation(s)
- Jia Qian
- Department of Heart Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Hongkou District, Shanghai, 200437, People's Republic of China
| | - Wenting Wan
- Department of Heart Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Hongkou District, Shanghai, 200437, People's Republic of China
| | - Min Fan
- Department of Heart Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No. 110, Ganhe Road, Hongkou District, Shanghai, 200437, People's Republic of China.
| |
Collapse
|
6
|
CCN2 Aggravates the Immediate Oxidative Stress-DNA Damage Response following Renal Ischemia-Reperfusion Injury. Antioxidants (Basel) 2021; 10:antiox10122020. [PMID: 34943123 PMCID: PMC8698829 DOI: 10.3390/antiox10122020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023] Open
Abstract
AKI, due to the fact of altered oxygen supply after kidney transplantation, is characterized by renal ischemia–reperfusion injury (IRI). Recent data suggest that AKI to CKD progression may be driven by cellular senescence evolving from prolonged DNA damage response (DDR) following oxidative stress. Cellular communication factor 2 (CCN2, formerly called CTGF) is a major contributor to CKD development and was found to aggravate DNA damage and the subsequent DDR–cellular senescence–fibrosis sequence following renal IRI. We therefore investigated the impact of CCN2 inhibition on oxidative stress and DDR in vivo and in vitro. Four hours after reperfusion, full transcriptome RNA sequencing of mouse IRI kidneys revealed CCN2-dependent enrichment of several signaling pathways, reflecting a different immediate stress response to IRI. Furthermore, decreased staining for γH2AX and p-p53 indicated reduced DNA damage and DDR in tubular epithelial cells of CCN2 knockout (KO) mice. Three days after IRI, DNA damage and DDR were still reduced in CCN2 KO, and this was associated with reduced oxidative stress, marked by lower lipid peroxidation, protein nitrosylation, and kidney expression levels of Nrf2 target genes (i.e., HMOX1 and NQO1). Finally, silencing of CCN2 alleviated DDR and lipid peroxidation induced by anoxia-reoxygenation injury in cultured PTECs. Together, our observations suggest that CCN2 inhibition might mitigate AKI by reducing oxidative stress-induced DNA damage and the subsequent DDR. Thus, targeting CCN2 might help to limit post-IRI AKI.
Collapse
|
7
|
Emerging methods for and novel insights gained by absolute quantification of mitochondrial DNA copy number and its clinical applications. Pharmacol Ther 2021; 232:107995. [PMID: 34592204 DOI: 10.1016/j.pharmthera.2021.107995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The past thirty years have seen a surge in interest in pathophysiological roles of mitochondria, and the accurate quantification of mitochondrial DNA copy number (mCN) in cells and tissue samples is a fundamental aspect of assessing changes in mitochondrial health and biogenesis. Quantification of mCN between studies is surprisingly variable due to a combination of physiological variability and diverse protocols being used to measure this endpoint. The advent of novel methods to quantify nucleic acids like digital polymerase chain reaction (dPCR) and high throughput sequencing offer the ability to measure absolute values of mCN. We conducted an in-depth survey of articles published between 1969 -- 2020 to create an overview of mCN values, to assess consensus values of tissue-specific mCN, and to evaluate consistency between methods of assessing mCN. We identify best practices for methods used to assess mCN, and we address the impact of using specific loci on the mitochondrial genome to determine mCN. Current data suggest that clinical measurement of mCN can provide diagnostic and prognostic value in a range of diseases and health conditions, with emphasis on cancer and cardiovascular disease, and the advent of means to measure absolute mCN should improve future clinical applications of mCN measurements.
Collapse
|
8
|
Shah AM, Jain K, Desai RS, Bansal S, Shirsat P, Prasad P, Bodhankar K. The Role of Increased Connective Tissue Growth Factor in the Pathogenesis of Oral Submucous Fibrosis and its Malignant Transformation-An Immunohistochemical Study. Head Neck Pathol 2021; 15:817-830. [PMID: 33544386 PMCID: PMC8384978 DOI: 10.1007/s12105-020-01270-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Connective tissue growth factor (CTGF), a matricellular protein of the CCN family of extracellular matrix-associated heparin-binding proteins, is highly expressed in various organ fibrosis and several malignant tumors. Although a few studies have been conducted using CTGF in oral submucous fibrosis (OSF) and oral squamous cell carcinoma, no study has demonstrated its relation with various stages of OSF and its malignant transformation. The present study investigated the possible role of CTGF in the pathogenesis of OSF and its malignant transformation by using immunohistochemistry. Ten formalin-fixed paraffin-embedded tissue blocks, each of Stage 1 OSF, Stage 2 OSF, Stage 3 OSF, Stage 4 OSF, well- differentiated squamous cell carcinoma (WDSCC) with OSF and WDSCC without OSF were stained for CTGF by immunohistochemistry. Ten cases of healthy buccal mucosa (NOM) were included as controls. The present study demonstrated a statistically significant expression of CTGF in the epithelium and connective tissue of OSF and WDSCC with and without OSF cases against its complete absence in NOM. We observed an upregulation of CTGF expression from NOM to various stages of OSF to WDSCC with or without OSF. A gradual upregulation of the CTGF expression in various stages of OSF to WDSCC (with and without OSF) against its complete absence in NOM suggests that CTGF plays an important role in the pathogenesis of OSF and its malignant transformation.
Collapse
Affiliation(s)
| | - Kejal Jain
- Department of Oral Pathology, Nair Hospital Dental College, Mumbai, 400008 India
| | - Rajiv S. Desai
- Department of Oral Pathology, Nair Hospital Dental College, Mumbai, 400008 India
| | - Shivani Bansal
- Department of Oral Pathology, Nair Hospital Dental College, Mumbai, 400008 India
| | - Pankaj Shirsat
- Department of Oral Pathology, Nair Hospital Dental College, Mumbai, 400008 India
| | - Pooja Prasad
- Department of Oral Pathology, Nair Hospital Dental College, Mumbai, 400008 India
| | - Kshitija Bodhankar
- Department of Oral Pathology, Nair Hospital Dental College, Mumbai, 400008 India
| |
Collapse
|