1
|
Chou YH, Pan SY, Shih HM, Lin SL. Update of pericytes function and their roles in kidney diseases. J Formos Med Assoc 2024; 123:307-317. [PMID: 37586973 DOI: 10.1016/j.jfma.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
Studies have highlighted the significant involvement of kidney pericytes in renal fibrosis. Kidney pericytes, classified as interstitial mesenchymal cells, are extensively branched, collagen-producing cells that closely interact with endothelial cells. This article aims to provide an overview of the recent advancements in understanding the physiological functions of pericytes and their roles in kidney diseases. In a healthy kidney, pericytes have essential physiological function in angiogenesis, erythropoietin (EPO) production, and the regulation of renal blood flow. Nevertheless, pericyte-myofibroblast transition has been identified as the primary cause of disease progression in acute kidney injury (AKI)-to-chronic kidney disease (CKD) continuum. Our recent research has demonstrated that hypoxia-inducible factor-2α (HIF-2α) regulates erythropoietin production in pericytes. However, this production is repressed by EPO gene hypermethylation and HIF-2α downregulation which were induced by transforming growth factor-β1-activated DNA methyltransferase and activin receptor-like kinase-5 signaling pathway during renal fibrosis, respectively. Additionally, AKI induces epigenetic modifications in pericytes, rendering them more prone to extracellular matrix production, cell migration and proliferation, thereby contributing to subsequent capillary rarefaction and renal fibrosis. Further investigation into the specific functions and roles of different subpopulations of pericytes may contribute for the development of targeted therapies aimed at attenuating kidney disease and mitigating their adverse effects.
Collapse
Affiliation(s)
- Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Yu Pan
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Hong-Mou Shih
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Yasuoka Y, Izumi Y, Fukuyama T, Oshima T, Yamazaki T, Uematsu T, Kobayashi N, Nanami M, Shimada Y, Nagaba Y, Mukoyama M, Sands JM, Takahashi N, Kawahara K, Nonoguchi H. Tubular Endogenous Erythropoietin Protects Renal Function against Ischemic Reperfusion Injury. Int J Mol Sci 2024; 25:1223. [PMID: 38279224 PMCID: PMC10816907 DOI: 10.3390/ijms25021223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Many large-scale studies show that exogenous erythropoietin, erythropoiesis-stimulating agents, lack any renoprotective effects. We investigated the effects of endogenous erythropoietin on renal function in kidney ischemic reperfusion injury (IRI) using the prolyl hydroxylase domain (PHD) inhibitor, Roxadustat (ROX). Four h of hypoxia (7% O2) and 4 h treatment by ROX prior to IRI did not improve renal function. In contrast, 24-72 h pretreatment by ROX significantly improved the decline of renal function caused by IRI. Hypoxia and 4 h ROX increased interstitial cells-derived Epo production by 75- and 6-fold, respectively, before IRI, and worked similarly to exogenous Epo. ROX treatment for 24-72 h increased Epo production during IRI by 9-fold. Immunohistochemistry revealed that 24 h ROX treatment induced Epo production in proximal and distal tubules and worked similarly to endogenous Epo. Our data show that tubular endogenous Epo production induced by 24-72 h ROX treatment results in renoprotection but peritubular exogenous Epo production by interstitial cells induced by hypoxia and 4 h ROX treatment did not. Stimulation of tubular, but not peritubular, Epo production may link to renoprotection.
Collapse
Affiliation(s)
- Yukiko Yasuoka
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (Y.Y.); (T.O.); (K.K.)
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Kumamoto, Japan; (Y.I.); (M.M.)
| | - Takashi Fukuyama
- Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (T.F.); (T.Y.); (T.U.); (N.K.)
| | - Tomomi Oshima
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (Y.Y.); (T.O.); (K.K.)
| | - Taiga Yamazaki
- Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (T.F.); (T.Y.); (T.U.); (N.K.)
| | - Takayuki Uematsu
- Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (T.F.); (T.Y.); (T.U.); (N.K.)
| | - Noritada Kobayashi
- Division of Biomedical Research, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (T.F.); (T.Y.); (T.U.); (N.K.)
| | - Masayoshi Nanami
- Division of Kidney and Dialysis, Department of Internal Medicine, Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Hyogo, Japan;
| | - Yoshitaka Shimada
- Division of Internal Medicine, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (Y.S.); (Y.N.)
| | - Yasushi Nagaba
- Division of Internal Medicine, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (Y.S.); (Y.N.)
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Kumamoto, Japan; (Y.I.); (M.M.)
| | - Jeff M. Sands
- Renal Division, Department of Medicine, Emory University School of Medicine, 1639 Pierce Drive, WMB Room 3313, Atlanta, GA 30322, USA;
| | - Noriko Takahashi
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (Y.Y.); (T.O.); (K.K.)
| | - Katsumasa Kawahara
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0374, Kanagawa, Japan; (Y.Y.); (T.O.); (K.K.)
| | - Hiroshi Nonoguchi
- Division of Internal Medicine, Kitasato University Medical Center, 6-100 Arai, Kitamoto 364-8501, Saitama, Japan; (Y.S.); (Y.N.)
| |
Collapse
|
3
|
Copur S, Demiray A, Basile C, Kanbay M. Endocrinological disorders in acute kidney injury: an often overlooked field of clinical research. J Nephrol 2023; 36:885-893. [PMID: 36652168 DOI: 10.1007/s40620-022-01554-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/05/2022] [Indexed: 01/19/2023]
Abstract
Acute kidney injury (AKI) is a common comorbidity, affecting approximately one in five hospitalized adults. The kidney is the site for the production, metabolism or excretion of most hormones, including the production of erythropoietin (EPO), the active form of vitamin D, renin, thrombopoietin, and the excretion of insulin, catecholamines, gastrin and many other hormones. Therefore, it is reasonable to say that AKI can have a considerable impact on the endocrine system. Although the effects of AKI on various parameters, including cardiovascular parameters, serum electrolytes and acid-base disorders, neuro-humoral mechanisms and neurological outcomes have been extensively studied, the endocrinological consequences of AKI are understudied. Thyroid dysfunction, mainly euthyroid sick syndrome, hypo/hyperglycemia, bone mineral disorders, changes in EPO and atrial natriuretic peptide (ANP) levels are commonly found in AKI. EPO, thyroxine and ANP administration have been evaluated as potential tools to prevent or treat AKI with varying success, while the effects of AKI on some key hormones, including cortisol and insulin, have never been studied. Aim of this narrative review is to illustrate what is known and what is not known about the endocrinological outcomes of AKI. Few clinical trials are ongoing: however, there is a clear need for large-scale randomized controlled trials investigating the endocrinological consequences of AKI.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Atalay Demiray
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Carlo Basile
- Associazione Nefrologica Gabriella Sebastio, Martina Franca, Italy.
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
4
|
Pan SY, Tsai PZ, Chou YH, Chang YT, Chang FC, Chiu YL, Chiang WC, Hsu T, Chen YM, Chu TS, Lin SL. Kidney pericyte hypoxia-inducible factor regulates erythropoiesis but not kidney fibrosis. Kidney Int 2021; 99:1354-1368. [PMID: 33812664 DOI: 10.1016/j.kint.2021.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/03/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
Prolyl hydroxylase domain enzyme (PHD) inhibitors are effective in the treatment of chronic kidney disease (CKD)-associated anemia by stabilizing hypoxia inducible factor (HIF), thereby increasing erythropoietin and consequently erythropoiesis. However, concern for CKD progression needs to be addressed in clinical trials. Although pre-clinical studies showed an anti-inflammatory effect in kidney disease models, the effect of PHD inhibitors on kidney fibrosis was inconsistent probably because the effects of HIF are cell type and context dependent. The major kidney erythropoietin-producing cells are pericytes that produce erythropoietin through HIF-2α-dependent gene transcription. The concern for the impact of HIF in pericytes on kidney fibrosis arises from the fact that pericytes are the major precursor cells of myofibroblasts in CKD. Since cells expressing Gli1 fulfill the morphologic and anatomic criteria for pericytes, we induced Gli1+ cell-specific HIF stabilization or knockout to study the impact of HIF in pericytes on kidney pathology of mice with or without fibrotic injury induced by unilateral ureteral obstruction. Compared with the littermate controls, mice with pericyte-specific HIF stabilization due to von Hippel-Lindau protein or PHD2 knockout showed increased serum erythropoietin and polycythemia rather than a discernible difference in kidney fibrosis. Compared with Gli1+ pericytes sorted from littermate controls, Gli1+ pericytes sorted from PHD2 knockout mice showed increased erythropoietin gene expression rather than discernible changes in Col1a1 or Acta2 expression. Furthermore, pericyte-specific knockout of HIF-1α or HIF-2α did not affect kidney fibrosis. Thus, our study supports the absence of negative effects of PHD inhibitors on kidney fibrosis of mice despite HIF stabilization in pericytes.
Collapse
Affiliation(s)
- Szu-Yu Pan
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Zhen Tsai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan
| | - Yu-Ting Chang
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fan-Chi Chang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Ling Chiu
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Graduate Program in Biomedical Informatics, Department of Computer Science and Engineering, College of Informatics, Yuan Ze University, Taoyuan, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Chih Chiang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Yung-Ming Chen
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzong-Shinn Chu
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Pan SY, Chiang WC, Chen YM. The journey from erythropoietin to 2019 Nobel Prize: Focus on hypoxia-inducible factors in the kidney. J Formos Med Assoc 2021; 120:60-67. [DOI: 10.1016/j.jfma.2020.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/19/2022] Open
|