1
|
Xu H, Mao B, Ni S, Xie X, Tang S, Wang Y, Zan X, Zheng Q, Huang W. Engineering Matrix-Free Drug Protein Nanoparticles with Promising Penetration through Biobarriers for Treating Corneal Neovascularization. ACS NANO 2024; 18:8209-8228. [PMID: 38452114 DOI: 10.1021/acsnano.3c12203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Protein drugs have been widely used in treating various clinical diseases because of their high specificity, fewer side effects, and favorable therapeutic effect, but they greatly suffer from their weak permeability through tissue barriers, high sensitivity to microenvironments, degradation by proteases, and rapid clearance by the immune system. Herein, we disrupted the standard protocol where protein drugs must be delivered as the cargo via a delivery system and innovatively developed a free entrapping matrix strategy by simply mixing bevacizumab (Beva) with zinc ions to generate Beva-NPs (Beva-Zn2+), where Beva is coordinatively cross-linked by zinc ions with a loading efficiency as high as 99.2% ± 0.41%. This strategy was universal to generating various protein NPs, with different metal ions (Cu2+, Fe3+, Mg2+, Sr2+). The synthetic conditions of Beva-NPs were optimized, and the generated mechanism was investigated in detail. The entrapment, releasing profile, and the bioactivities of released Beva were thoroughly studied. By using in situ doping of the fourth-generation polyamindoamine dendrimer (G4), the Beva-G4-NPs exhibited extended ocular retention and penetration through biobarriers in the anterior segment through transcellular and paracellular pathways, effectively inhibiting corneal neovascularization (CNV) from 91.6 ± 2.03% to 13.5 ± 1.87% in a rat model of CNV. This study contributes to engineering of protein NPs by using a facile strategy for overcoming the weaknesses of protein drugs and protein NPs, such as weak tissue barrier permeability, low encapsulation efficiency, poor loading capacity, and susceptibility to inactivation.
Collapse
Affiliation(s)
- Hongyan Xu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, People's Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Bangxun Mao
- The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, People's Republic of China
| | - Shulan Ni
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, People's Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Xiaoling Xie
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, People's Republic of China
| | - Sicheng Tang
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Yang Wang
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Xingjie Zan
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, People's Republic of China
- Wenzhou Key Laboratory of Perioperative Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, People's Republic of China
| | - Qinxiang Zheng
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, People's Republic of China
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo 315000, People's Republic of China
| | - Wenjuan Huang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, People's Republic of China
| |
Collapse
|
2
|
Romano V, Steger B, Ahmad M, Coco G, Pagano L, Ahmad S, Zhao Y, Zheng Y, Kaye SB. Imaging of vascular abnormalities in ocular surface disease. Surv Ophthalmol 2021; 67:31-51. [PMID: 33992663 DOI: 10.1016/j.survophthal.2021.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/25/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
The vascular system of the ocular surface plays a central role in infectious, autoimmune, inflammatory, traumatic and neoplastic diseases. The development, application, and monitoring of treatments for vascular abnormalities depends on the in vivo analysis of the ocular surface vasculature. Until recently, ocular surface vascular imaging was confined to biomicroscopic and color photographic assessment, both limited by poor reproducibility and the inability to image lymphatic vasculature in vivo. The evolvement and clinical implementation of innovative imaging modalities including confocal microscopy, intravenous, and optical coherence tomography-based angiography now allows standardized quantitative and functional vascular assessment with potential applicability to automated analysis algorithms and diagnostics.
Collapse
Affiliation(s)
- Vito Romano
- Corneal and External Eye Disease Service, The Royal Liverpool University Hospital, Liverpool, UK; Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
| | - Bernhard Steger
- Department of Ophthalmology, Medical University of Innsbruck, Innsbruck, Austria
| | - Mohammad Ahmad
- Corneal and External Eye Disease Service, The Royal Liverpool University Hospital, Liverpool, UK
| | - Giulia Coco
- Corneal and External Eye Disease Service, The Royal Liverpool University Hospital, Liverpool, UK; Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luca Pagano
- Corneal and External Eye Disease Service, The Royal Liverpool University Hospital, Liverpool, UK; Humanitas Clinical and Research, Rozzano (Mi) Italy
| | | | - Yitian Zhao
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK; Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Yalin Zheng
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Stephen B Kaye
- Corneal and External Eye Disease Service, The Royal Liverpool University Hospital, Liverpool, UK; Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Evaluation of Clinical and Histological Outcomes of Adipose-Derived Mesenchymal Stem Cells in a Rabbit Corneal Alkali Burn Model. Stem Cells Int 2021; 2021:6610023. [PMID: 33763139 PMCID: PMC7964115 DOI: 10.1155/2021/6610023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/30/2021] [Accepted: 02/14/2021] [Indexed: 11/18/2022] Open
Abstract
To assess effects of adipose-derived mesenchymal stem cells (AMSCs) in corneal alkali injuries in an experimental animal model. Twenty white New Zealand rabbits were included in the study. The animal models were randomly divided into 2 groups. Rabbits in the AMSC group (n = 10) received an intrastromal, a subconjunctival injection, and topical instillation of 0.5 ml totally of phosphate-buffered saline (PBS) containing 2 × 106 AMSCs. In the control group (n = 10), rabbits received only 0.5 ml of PBS using the same methods. A masked investigator measured the corneal sensation, anterior chamber Inflammation (ACI), and conjunctival congestion. Additionally, a blind histological and immunohistochemical evaluation was made. In the AMSC group, the central corneal sensation was increased whereas ACI and conjunctival congestion were reduced compared to the control group in the 28 days of follow-up (p < 0.05). A statistically significant difference (p < 0.05) was noted between the two groups as recorded in the above parameters. Histological analysis showed that pathological vascularization was markedly reduced in the AMSC group which was consistent with the absence of factor VIII in the immunohistochemistry sections. There is a trend towards improved clinical outcomes including corneal sensation as well as acceleration in the restoration of normal corneal architecture in corneal alkali burns treated with AMSCs, results that support the need for further research in the field.
Collapse
|
4
|
Friedman M, Azrad-Lebovitz T, Morzaev D, Zahavi A, Marianayagam NJ, Nicholson JD, Brookman M, Michowiz S, Hochhauser E, Goldenberg-Cohen N. Protective Effect of TLR4 Ablation against Corneal Neovascularization following Chemical Burn in a Mouse Model. Curr Eye Res 2019; 44:505-513. [PMID: 30595046 DOI: 10.1080/02713683.2018.1564833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE To determine whether Toll-like receptor 4 knockout protects mice from corneal neovascularization following chemical injury compared to wild-type (WT) mice. METHODS A chemical burn (75% silver nitrate, 25% potassium nitrate) was created under anesthesia in the central right cornea of 32 WT and 31 Toll-like receptor 4 knockout mice. Corneal neovascularization was evaluated at 3, 4, 6, 8, 10, and 35 days after injury using digital photography, fluorescein angiography, gelatin perfusion with fluorescence vascular imaging, immunofluorescence staining, and molecular analysis. RESULTS There was no significant between-group difference in relative corneal burn area at 10 days after injury (39.0 ± 2.4% vs. 38.8 ± 9.8%, respectively). Neovascularization was detected in all corneas in vivo and perfusion was detected by fluorescence vascular imaging, reaching maximum area on day 10. The relative area of neovascularization was significantly smaller in the knockout than the WT mice on days 6 (33.3 ± 4.2% vs. 46.8 ± 7.4%, respectively, p = 0.005) and 8 (36.6 ± 1.1% vs. 52.2 ± 6.4%, respectively, p = 0.027), although neovascularization was intensive in both groups. In line with the immunostaining findings of angiogenesis and inflammatory infiltration of damaged corneas, molecular analysis (performed on day 3) revealed elevated expression levels of angiogenesis-related genes (vascular endothelial growth factor, VEGFR2, VEGFR1) and inflammation-related genes (CD45 and TGFβ1) in the WT mice. The knockout mice had higher TNF-α expression than the WT mice. CONCLUSION In a mouse corneal chemical burn model, lack of Toll-like receptor 4 expression did not completely inhibit angiogenesis, but did have a relative effect to reduce neovascularization as compared to the WT.
Collapse
Affiliation(s)
- Moran Friedman
- a Krieger Eye Research Laboratory, Felsenstein Medical Research Center , Beilinson Hospital , Petach Tikva , Israel.,b Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Tamar Azrad-Lebovitz
- a Krieger Eye Research Laboratory, Felsenstein Medical Research Center , Beilinson Hospital , Petach Tikva , Israel.,b Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Dana Morzaev
- a Krieger Eye Research Laboratory, Felsenstein Medical Research Center , Beilinson Hospital , Petach Tikva , Israel.,b Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Alon Zahavi
- b Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel.,c Department of Ophthalmology , Rabin Medical Center , Petach Tikva , Israel
| | - Neelan J Marianayagam
- a Krieger Eye Research Laboratory, Felsenstein Medical Research Center , Beilinson Hospital , Petach Tikva , Israel.,d Department of Neurosurgery , Rabin Medical Center - Beilinson Hospital , Petach Tikva , Israel
| | - James D Nicholson
- a Krieger Eye Research Laboratory, Felsenstein Medical Research Center , Beilinson Hospital , Petach Tikva , Israel.,b Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Myles Brookman
- b Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Shalom Michowiz
- d Department of Neurosurgery , Rabin Medical Center - Beilinson Hospital , Petach Tikva , Israel
| | - Edith Hochhauser
- b Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel.,e Laboratory of Cardiac Research, Felsenstein Medical Research Center , Beilinson Hospital , Petach Tikva , Israel
| | - Nitza Goldenberg-Cohen
- a Krieger Eye Research Laboratory, Felsenstein Medical Research Center , Beilinson Hospital , Petach Tikva , Israel.,b Sackler Faculty of Medicine , Tel Aviv University , Tel Aviv , Israel
| |
Collapse
|
5
|
Quiroz-Mercado J, Ramírez-Velázquez N, Partido G, Zenteno E, Chávez R, Agundis-Mata C, Jiménez-Martínez MC, Garfias Y. Tissue and cellular characterisation of nucleolin in a murine model of corneal angiogenesis. Graefes Arch Clin Exp Ophthalmol 2016; 254:1753-63. [PMID: 27313162 DOI: 10.1007/s00417-016-3409-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/08/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Corneal neovascularisation (CNV), with consequent loss of transparency, is due to an imbalance of proangiogenic factors. Cell-surface nucleolin (NCL) has been associated with neo-angiogenesis. There are studies identifying NCL translocation from nucleus to the cell surface, which is essential for endothelial cell proliferation. To find the possible role of NCL in the generation of corneal neovessels, the aim of this study is to characterise the NCL presence and cell-localisation in non-injured corneas, as well as to describe the changes in NCL cell and tissue localisation in CNV, and to analyse the effect of bevacizumab on NCL cellular and tissular distribution. METHODS Suture-induced CNV was performed in mice. The corneal tissues were obtained and the histological and co-immunofluorescence assays were performed using different proteins, such as CD31, cadherin and isolectin B4. To determine the possible role of VEGF in NCL presence and localisation in our CNV model, bevacizumab was concomitantly used. RESULTS Nucleolin was principally observed in the nucleus of the basal epithelial cells of normal corneas. Interestingly, angiogenesis-induced changes were observed in the localisation of NCL, not only in tissue but also at the cellular level where NCL was extranuclear in epithelial cells, stromal cells and neovessels. In contrast, these changes were reverted when bevacizumab was used. Besides, NCL was able to stain only aberrant corneal neovessels in comparison with retinal vessels. CONCLUSIONS NCL mobilisation outside the nucleus during angiogenesis could have a possible role as a proangiogenic molecule in the corneal tissue.
Collapse
Affiliation(s)
- Joaquín Quiroz-Mercado
- Research Unit, Institute of Ophthalmology Conde de Valenciana Foundation, Chimalpopoca 14, 06800, Mexico City, Mexico
- Faculty of Veterinary Medicine and Animal Husbandry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Norma Ramírez-Velázquez
- Research Unit, Institute of Ophthalmology Conde de Valenciana Foundation, Chimalpopoca 14, 06800, Mexico City, Mexico
| | - Graciela Partido
- Research Unit, Institute of Ophthalmology Conde de Valenciana Foundation, Chimalpopoca 14, 06800, Mexico City, Mexico
| | - Edgar Zenteno
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Raúl Chávez
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Concepción Agundis-Mata
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Maria Carmen Jiménez-Martínez
- Research Unit, Institute of Ophthalmology Conde de Valenciana Foundation, Chimalpopoca 14, 06800, Mexico City, Mexico
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico
| | - Yonathan Garfias
- Research Unit, Institute of Ophthalmology Conde de Valenciana Foundation, Chimalpopoca 14, 06800, Mexico City, Mexico.
- Department of Biochemistry, Faculty of Medicine, Universidad Nacional Autónoma de México, Avenida Universidad 3000, 04510, Mexico City, Mexico.
| |
Collapse
|
6
|
Hamdan J, Boulze M, Aziz A, Alessi G, Hoffart L. [Corneal neovascularisation treatments compared: Subconjunctival bevacizumab injections and/or photodynamic therapy]. J Fr Ophtalmol 2015; 38:924-33. [PMID: 26522892 DOI: 10.1016/j.jfo.2015.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/19/2015] [Accepted: 06/25/2015] [Indexed: 12/27/2022]
Abstract
PURPOSE To evaluate and compare the efficacy of subconjunctival bevacizumab injections alone, photodynamic therapy alone and combined treatments for reduction of corneal neovascularization. METHODS This study was conducted as a prospective case series. A total of seven eyes of 7 patients with corneal neovascularization caused by ocular surface disorders including fungal infectious keratitis and penetrating keratoplasty were included in the study. Patients were randomized into the three following groups: patients in group A received a single subconjunctival injection of 10mg (0.4mL) of bevacizumab, patients in group B were treated with photodynamic therapy with verteporfin (6mg/m(2)) to the neovascularized area and those in group C received a subconjunctival injection of bevacizumab and photodynamic therapy 7 days later. Morphological changes in neovascularization were evaluated over 6 months using slit-lamp biomicroscopy and digital corneal photography. A computer-assisted semi-automatic analysis of the area of corneal neovascularization was performed with Image J software. RESULTS Recession of corneal vessels was observed in all eyes at 1 month post-treatment. The neovascularized surface area in all groups combined showed a decrease in the first month after treatment and this decrease continued up to the 6th month. The surface area of corneal neovascularization decreased by 34.05±8.28% in group A (subconjunctival injection of bevacizumab), by 42.06±28.36% in group B (photodynamic therapy with verteporfin) and by 51.67±18.93% in group C (combined subconjunctival injection of bevacizumab and photodynamic therapy). A combined treatment consisting of a subconjunctival injection followed by a PDT session 7 days later might be more effective for the treatment of corneal neovascularisation. No serious local or systemic adverse events were observed. CONCLUSIONS Our medium-term results suggest that combined subconjunctival injection of bevacizumab and photodynamic therapy with verteporfin might be used safely and effectively to reduce corneal neovascularization surface. This combined therapy may show a tendency toward greater efficacy than the individual monotherapies. Controlled prospective randomized multicentric trials with a larger sample size are necessary to assess long-term efficacy and to confirm these results.
Collapse
Affiliation(s)
- J Hamdan
- Service d'ophtalmologie, hôpital de la Timone, AP-HM, 264, rue Saint-Pierre, 13385 Marseille cedex 5, France.
| | - M Boulze
- Service d'ophtalmologie, hôpital de la Timone, AP-HM, 264, rue Saint-Pierre, 13385 Marseille cedex 5, France
| | - A Aziz
- Service d'ophtalmologie, hôpital Nord, AP-HM, chemin des Bourrely, 13915 Marseille cedex 20, France
| | - G Alessi
- Service d'ophtalmologie, centre hospitalier du Pays d'Aix, avenue des Tamaris, 13616 Aix-en-Provence, France
| | - L Hoffart
- Service d'ophtalmologie, hôpital de la Timone, AP-HM, 264, rue Saint-Pierre, 13385 Marseille cedex 5, France
| |
Collapse
|