1
|
Heaney D, Padilla-Zakour OI, Chen C. Processing and preservation technologies to enhance indigenous food sovereignty, nutrition security and health equity in North America. Front Nutr 2024; 11:1395962. [PMID: 38962432 PMCID: PMC11221487 DOI: 10.3389/fnut.2024.1395962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
Indigenous foods are carriers of traditional native North American food culture and living philosophy. They are featured by the wide varieties in fresh and processed forms, richness in nutrition, flavor, health benefits and diversity in origins, but are usually misunderstood or underrepresented in the modern food systems. Conventional processing and cooking methods are sometimes labor-intensive, less efficient and lack science-based guidelines to prevent unseen safety risks and food loss. Global and regional climate change have caused additional challenges to conventional cooking/processing, and increased native communities' reliance on externally produced foods, which have resulted in increasing nutritional unbalance and prevalence of diet-related health issues. Current and emerging technologies, such as storage and packaging, drying, safety processing, canning, pickling, and fermentation, which treat foods under optimized conditions to improve the safety and extend the shelf-life, are increasingly used in current food systems. Therefore, exploring these technologies for indigenous foods offers opportunities to better preserve their nutrition, safety, and accessibility, and is critical for the sovereignty and independence of indigenous food systems, and sustainability of indigenous food culture. This mini-review focuses on identifying adoptable processing and preservation technologies for selected traditional indigenous foods in North America, summarizing education, extension, and outreach resources and discussing the current challenges and future needs critical to expanding knowledge about indigenous foods and improving food sovereignty, nutrition security, and health equity.
Collapse
Affiliation(s)
| | - Olga I. Padilla-Zakour
- Department of Food Science, Cornell AgriTech, Cornell University, Geneva, NY, United States
| | - Chang Chen
- Department of Food Science, Cornell AgriTech, Cornell University, Geneva, NY, United States
| |
Collapse
|
2
|
Wang Y, Zhang L, Yu X, Zhou C, Yagoub AEA, Li D. A Catalytic Infrared System as a Hot Water Replacement Strategy: A Future Approach for Blanching Fruits and Vegetables to Save Energy and Water. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2187060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Yuqing Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Long Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Abu ElGasim Ahmed Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Dajing Li
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
3
|
Wang Y, Li T, Pan Z, Ye X, Ma H. Effectiveness of combined catalytic infrared radiation and holding time for decontamination Aspergillus niger on dried shiitake mushrooms (Lentinus edodes) with different moisture contents. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
4
|
Infrared and Microwave as a dry blanching tool for Irish potato: Product quality, cell integrity, and artificial neural networks (ANNs) modeling of enzyme inactivation kinetic. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Recent development in low-moisture foods: Microbial safety and thermal process. Food Res Int 2022; 155:111072. [DOI: 10.1016/j.foodres.2022.111072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
|
6
|
Wang K, Huang L, Xu Y, Cui B, Sun Y, Ran C, Fu H, Chen X, Wang Y, Wang Y. Evaluation of Pilot-Scale Radio Frequency Heating Uniformity for Beef Sausage Pasteurization Process. Foods 2022; 11:foods11091317. [PMID: 35564039 PMCID: PMC9101778 DOI: 10.3390/foods11091317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Radio frequency (RF) heating has the advantages of a much faster heating rate as well as the great potential for sterilization of food compared to traditional thermal sterilization. A new kettle was designed for sterilization experiments applying RF energy (27.12 MHz, 6 kW). In this research, beef sausages were pasteurized by RF heating alone, the dielectric properties (DPs) of which were determined, and heating uniformity and heating rate were evaluated under different conditions. The results indicate that the DPs of samples were significantly influenced (p < 0.01) by the temperature and frequency. The electrode gap, sample height and NaCl content had significant effects (p < 0.01) on the heating uniformity when using RF energy alone. The best heating uniformity was obtained under an electrode gap of 180 mm, a sample height of 80 mm and NaCl content of 3%. The cold points and hot spots were located at the edge of the upper section and geometric center of the sample, respectively. This study reveals the great potential in solid food for pasteurization using RF energy alone. Future studies should focus on sterilization applying RF energy and SW simultaneously using the newly designed kettle.
Collapse
Affiliation(s)
- Ke Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (K.W.); (Y.X.); (B.C.); (Y.S.); (C.R.); (H.F.); (X.C.); (Y.W.)
| | - Lisong Huang
- College of Food Science and Engineering, NanJing University of Finance &Economics, Nanjing 210023, China;
| | - Yangting Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (K.W.); (Y.X.); (B.C.); (Y.S.); (C.R.); (H.F.); (X.C.); (Y.W.)
| | - Baozhong Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (K.W.); (Y.X.); (B.C.); (Y.S.); (C.R.); (H.F.); (X.C.); (Y.W.)
| | - Yanan Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (K.W.); (Y.X.); (B.C.); (Y.S.); (C.R.); (H.F.); (X.C.); (Y.W.)
| | - Chuanyang Ran
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (K.W.); (Y.X.); (B.C.); (Y.S.); (C.R.); (H.F.); (X.C.); (Y.W.)
| | - Hongfei Fu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (K.W.); (Y.X.); (B.C.); (Y.S.); (C.R.); (H.F.); (X.C.); (Y.W.)
| | - Xiangwei Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (K.W.); (Y.X.); (B.C.); (Y.S.); (C.R.); (H.F.); (X.C.); (Y.W.)
| | - Yequn Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (K.W.); (Y.X.); (B.C.); (Y.S.); (C.R.); (H.F.); (X.C.); (Y.W.)
| | - Yunyang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (K.W.); (Y.X.); (B.C.); (Y.S.); (C.R.); (H.F.); (X.C.); (Y.W.)
- Correspondence: ; Tel.: +86-135-7241-2298
| |
Collapse
|
7
|
Rahmati E, Khoshtaghaza MH, Banakar A, Ebadi M. Decontamination technologies for medicinal and aromatic plants: A review. Food Sci Nutr 2022; 10:784-799. [PMID: 35311169 PMCID: PMC8907729 DOI: 10.1002/fsn3.2707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/29/2021] [Accepted: 11/21/2021] [Indexed: 11/08/2022] Open
Abstract
Microbial quality assurance has always been an important subject in the production, trade, and consumption of medicinal and aromatic plants (MAPs). Most MAPs have therapeutic and nutritional properties due to the presence of active substances such as essential oils, flavonoids, alkaloids, etc. However, MAPs can become infected with microorganisms due to poor hygienic conditions during cultivation and postharvest processes. This problem reduces the shelf life and effective ingredients of the product. To overcome these problems, several technologies such as using ethylene oxide gas, gamma irradiation, and steam heating have been used. However, these technologies have disadvantages such as the formation of toxic by-products, low consumer acceptance, or may have a negative effect on the quality of MAPs. This requires a need for novel decontamination technology which can effectively reduce the biological contamination and minimize the food quality losses. In recent years, new technologies such as ozonation, cold plasma, ultraviolet, infrared, microwave, radiofrequency and combination of these technologies have been developed. In this review, biological contamination of MAPs and technologies used for their decontamination were studied. Also, the mechanism of inactivation of microorganisms and the efficacy of decontamination techniques on the qualitative and microbial characteristics of MAPs were investigated.
Collapse
Affiliation(s)
- Edris Rahmati
- Department of Biosystems EngineeringTarbiat Modares UniversityTehranIran
| | | | - Ahmad Banakar
- Department of Biosystems EngineeringTarbiat Modares UniversityTehranIran
| | | |
Collapse
|
8
|
Mir SA, Shah MA, Mir MM, Sidiq T, Sunooj KV, Siddiqui MW, Marszałek K, Mousavi Khaneghah A. Recent developments for controlling microbial contamination of nuts. Crit Rev Food Sci Nutr 2022; 63:6710-6722. [PMID: 35170397 DOI: 10.1080/10408398.2022.2038077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In recent years, the consumption of nuts has shown an increasing trend worldwide. Nuts are an essential part of several countries' economies as an excellent source of nutrients and bioactive compounds. They are contaminated by environmental factors, improper harvesting practices, inadequate packaging procedures, improper storage, and transportation. The longer storage time also leads to the greater chances of contamination from pathogenic fungi. Nuts are infected with Aspergillus species, Penicillium species, Escherichia coli, Salmonella, and Listeria monocytogenes. Therefore, nuts are associated with a high risk of pathogens and mycotoxins, which demand the urgency of using techniques for enhancing microbial safety and shelf-life stability. Many techniques such as ozone, cold plasma, irradiation, radiofrequency have been explored for the decontamination of nuts. These techniques have different efficiencies for reducing the contamination depending on processing parameters, type of pathogen, and conditions of food material. This review provides insight into decontamination technologies for reducing microbial contamination from nuts.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Department of Food Science & Technology, Government College for Women, Srinagar, Jammu & Kashmir, India
| | - Manzoor Ahamd Shah
- Department of Food Science & Technology, Government Degree College for Women, Anantnag, Jammu & Kashmir, India
| | - Mohammad Maqbool Mir
- Division of Fruit Science, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, Jammu & Kashmir, India
| | - Tahira Sidiq
- Department of Home Science, Government College for Women, Anantnag, Jammu & Kashmir, India
| | | | - Mohammed Wasim Siddiqui
- Department of Food Science & Postharvest Technology, Bihar Agricultural University, Sabour, India
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Warsaw, Poland
- Department of General Food Technology and Nutrition, Institute of Food Technology and Nutrition, College of Natural Science, University of Rzeszow, Rzeszow, Poland
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, Sao Paulo, Brazil
| |
Collapse
|
9
|
Liu S, Wei X, Tang J, Qin W, Wu Q. Recent developments in low-moisture foods: microbial validation studies of thermal pasteurization processes. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34927484 DOI: 10.1080/10408398.2021.2016601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Outbreaks associated with low-moisture foods (e.g., wheat flour, nuts, and cereals) have urged the development of novel technologies and re-validation of legacy pasteurization process. For various thermal pasteurization processes, they share same scientific facts (e.g., bacterial heat resistance increased at reduced water activity) and guidelines. However, they also face specific challenges because of their different heat transfer mechanisms, processing conditions, or associated low-moisture foods' formulations. In this article, we first introduced the general structural for validating a thermal process and the shared basic information that would support our understanding of the key elements of each thermal process. Then, we reviewed the current progress of validation studies of 7 individual heating technologies (drying roasting, radiofrequency-assisted pasteurization, superheated steam, etc.) and the combined treatments (e.g., infrared and hot air). Last, we discussed knowledge gaps that require more scientific data in the future studies. We aimed to provide a process-centric view point of thermal pasteurization studies of low-moisture foods. The information could provide detailed protocol for process developers, operators, and managers to enhance low-moisture foods safety.
Collapse
Affiliation(s)
- Shuxiang Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,Institute of Food Processing and Safety, School of Food Science, Sichuan Agricultural University, Sichuan, China
| | - Xinyao Wei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Juming Tang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| | - Wen Qin
- Institute of Food Processing and Safety, School of Food Science, Sichuan Agricultural University, Sichuan, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
10
|
Pulsed Light (PL) Treatments on Almond Kernels: Salmonella enteritidis Inactivation Kinetics and Infrared Thermography Insights. FOOD BIOPROCESS TECH 2021; 14:2323-2335. [PMID: 34751231 PMCID: PMC8566968 DOI: 10.1007/s11947-021-02725-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/22/2021] [Indexed: 11/05/2022]
Abstract
Abstract Extending the shelf-life and ensuring microbiological safety of food products while preserving the nutritional properties are key aspects that must be addressed. Heat processing of food matrices has been the golden standard during the last decades, while certain non-thermal processing options have recently gained ground. In the present study, experimental pulsed light (PL) surface inactivation treatments of Salmonella enteritidis on almonds kernels are performed. The PL system is set to test different operative conditions, namely power (1000, 1250, and 1500 W) and frequency (1.8, 3.0, and 100.0 Hz) at different treatment times (from 5 to 250 s), which result in applied fluence doses in the 0–100 J·cm−2 range. Additionally, temperature measurements are collected at each operative condition on the almond surface (using infrared (IR) thermography) and at the superficial layer of the almond (1-mm depth using a thermocouple). The observed PL inactivation kinetics are then modelled using four different models. The best goodness-of-fit is found for the two-parameter Weibull model (R2 > 0.98 and RMSE < 0.33 for all cases). The maximum achieved log-CFU reductions are 6.02 for the 1.8-Hz system, 4.69 for the 3.0-Hz system, and 3.66 for 100.0-Hz system. The offset between the collected temperature readings by the two sensors is contrasted against the inactivation rate (following the two-parameter Weibull model). It was found that the highest inactivation rate corresponds approximately to the point where the infrared camera detects a slowdown in the surface heating. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s11947-021-02725-9.
Collapse
|
11
|
Verma T, Chaves BD, Irmak S, Subbiah J. Pasteurization of dried basil leaves using radio frequency heating: A microbial challenge study and quality analysis. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107932] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Dhowlaghar N, Zhu MJ. Control of Salmonella in low-moisture foods: Enterococcus faecium NRRL B-2354 as a surrogate for thermal and non-thermal validation. Crit Rev Food Sci Nutr 2021; 62:5886-5902. [PMID: 33798006 DOI: 10.1080/10408398.2021.1895055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Salmonella has been implicated in multiple foodborne outbreaks and recalls associated with low water activity foods (LawF). To verify the effectiveness of a process against Salmonella in LawF, validation using a nonpathogenic surrogate strain is essential. Enterococcus faecium NRRL B-2354 strain has been used as a potential surrogate of Salmonella in different processing of LawF. However, the survival of Salmonella and E. faecium in LawF during food processing is a dynamic function of aw, food composition and structure, processing techniques, and other factors. This review assessed pertinent literature on the thermal and non-thermal inactivation of Salmonella and its presumable surrogate E. faecium in various LawF and provided an overview of its suitibility in different LawF. Overall, based on the D-values, survival/reduction, temperature/time to obtain 4 or 5-log reductions, most studies concluded that E. faecium is a suitable surrogate of Salmonella during LawF processing as its magnitude of resistance was slightly greater or equal (i.e., statistical similar) as compared to Salmonella. Studies also showed its unsuitability which either does not provide a proper margin of safety or being overly resistant and may compromise the quality and organoleptic properties of food. This review provides useful information and guidance for future validation studies of LawF.
Collapse
Affiliation(s)
- Nitin Dhowlaghar
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
13
|
Deng LZ, Sutar PP, Mujumdar AS, Tao Y, Pan Z, Liu YH, Xiao HW. Thermal Decontamination Technologies for Microorganisms and Mycotoxins in Low-Moisture Foods. Annu Rev Food Sci Technol 2021; 12:287-305. [PMID: 33317321 DOI: 10.1146/annurev-food-062220-112934] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The contamination risks of microorganisms and mycotoxins in low-moisture foods have heightened public concern. Developing novel decontamination technologies to improve the safety of low-moisture foods is of great interest in both economics and public health. This review summarizes the working principles and applications of novel thermal decontamination technologies such as superheated steam, infrared, microwave, and radio-frequency heating as well as extrusion cooking. These methods of decontamination can effectively reduce the microbial load on products andmoderately destruct the mycotoxins. Meanwhile, several integrated technologies have been developed that take advantage of synergistic effects to achieve the maximum destruction of contaminants and minimize the deterioration of products.
Collapse
Affiliation(s)
- Li-Zhen Deng
- College of Engineering, China Agricultural University, 100083 Beijing, China; .,State Key Laboratory of Food Science and Technology, Nanchang University, 330047 Nanchang, China
| | - Parag Prakash Sutar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Arun S Mujumdar
- Department of Bioresource Engineering, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, California 95616, USA
| | - Yan-Hong Liu
- College of Engineering, China Agricultural University, 100083 Beijing, China;
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, 100083 Beijing, China;
| |
Collapse
|
14
|
Oduola AA, Bowie R, Wilson SA, Mohammadi Shad Z, Atungulu GG. Impacts of broadband and selected infrared wavelength treatments on inactivation of microbes on rough rice. J Food Saf 2020. [DOI: 10.1111/jfs.12764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Abass A. Oduola
- Department of Food Science, University of Arkansas Division of AgricultureUniversity of Arkansas Fayetteville Arkansas
| | - Rebecca Bowie
- Department of Food Science, University of Arkansas Division of AgricultureUniversity of Arkansas Fayetteville Arkansas
| | - Shantae A. Wilson
- Department of Food Science, University of Arkansas Division of AgricultureUniversity of Arkansas Fayetteville Arkansas
| | - Zeinab Mohammadi Shad
- Department of Food Science, University of Arkansas Division of AgricultureUniversity of Arkansas Fayetteville Arkansas
| | - Griffiths G. Atungulu
- Department of Food Science, University of Arkansas Division of AgricultureUniversity of Arkansas Fayetteville Arkansas
| |
Collapse
|
15
|
Evaluation of Enterococcus faecium NRRL B-2354 as a potential surrogate of Salmonella in packaged paprika, white pepper and cumin powder during radio frequency heating. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106833] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Radiofrequency pasteurization process for inactivation of Salmonella spp. and Enterococcus faecium NRRL B-2354 on ground black pepper. Food Microbiol 2019; 82:388-397. [DOI: 10.1016/j.fm.2019.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 11/23/2022]
|
17
|
Chen L, Wei X, Irmak S, Chaves BD, Subbiah J. Inactivation of Salmonella enterica and Enterococcus faecium NRRL B-2354 in cumin seeds by radiofrequency heating. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.04.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Ozturk S, Liu S, Xu J, Tang J, Chen J, Singh RK, Kong F. Inactivation of Salmonella Enteritidis and Enterococcus faecium NRRL B-2354 in corn flour by radio frequency heating with subsequent freezing. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.090] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Cheng T, Wang S. Modified atmosphere packaging pre-storage treatment for thermal control of E. coli ATCC 25922 in almond kernels assisted by radio frequency energy. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Effects of infrared radiation combined with heating on grape seeds and oil quality. FOOD SCI TECHNOL INT 2018; 25:160-170. [DOI: 10.1177/1082013218808902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of this work was to determine the effects of infrared radiation combined with heating on grape seeds and oil quality. Experimental results showed that high moisture removal was achieved through infrared radiation heating. After infrared radiation heating for 108 s, the inactivation rates of total aerobic bacterial and total mold-yeast counts of the grape seeds were 1.97 ± 0.12 and 0.62 ± 0.09 log CFU/g, respectively. The maximum microbial reduction was achieved after infrared radiation heating of the grape seeds to 135 ℃ and subsequent holding at 75 ℃ for 60 min. The crude oil yield of samples subjected to these conditions was 10.39%, which was significantly higher ( p < 0.05) than that of the control sample, and their final moisture content was 7.20%. Additionally, increases in the free fatty acid content and peroxide value of the oil were achieved. The iodine value of the oil decreased. In conclusion, surface pasteurization with a high oil yield could be achieved by the combination of infrared radiation heating and the holding process. Consequently, infrared radiation treatment is suggested to be a promising method for the surface pasteurization of grape seeds.
Collapse
|
21
|
Feng Y, Wu B, Yu X, Yagoub AEA, Sarpong F, Zhou C. Effect of catalytic infrared dry-blanching on the processing and quality characteristics of garlic slices. Food Chem 2018; 266:309-316. [DOI: 10.1016/j.foodchem.2018.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
|
22
|
Feasibility of using sequential infrared and hot air for almond drying and inactivation of Enterococcus faecium NRRL B-2354. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.095] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Design, fabrication, and evaluation a laboratory dry-peeling system for hazelnut using infrared radiation. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Xu J, Liu S, Tang J, Ozturk S, Kong F, Shah DH. Application of freeze-dried Enterococcus faecium NRRL B-2354 in radio-frequency pasteurization of wheat flour. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Verma T, Wei X, Lau SK, Bianchini A, Eskridge KM, Subbiah J. Evaluation of Enterococcus faecium NRRL B-2354 as a Surrogate for Salmonella During Extrusion of Low-Moisture Food. J Food Sci 2018; 83:1063-1072. [PMID: 29577278 DOI: 10.1111/1750-3841.14110] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 01/09/2023]
Abstract
Salmonella in low-moisture foods is an emerging challenge due to numerous food product recalls and foodborne illness outbreaks. Identification of suitable surrogate is critical for process validation at industry level due to implementation of new Food Safety Modernization Act of 2011. The objective of this study was to evaluate Enterococcus faecium NRRL B-2354 as a surrogate for Salmonella during the extrusion of low-moisture food. Oat flour, a low-moisture food, was adjusted to different moisture (14% to 26% wet basis) and fat (5% to 15% w/w) contents and was inoculated with E. faecium NRRL B-2354. Inoculated material was then extruded in a lab-scale single-screw extruder running at different screw speeds (75 to 225 rpm) and different temperatures (75, 85, and 95 °C). A split-plot central composite 2nd order response surface design was used, with the central point replicated six times. The data from the selective media (m-Enterococcus agar) was used to build the response surface model for inactivation of E. faecium NRRL B-2354. Results indicated that E. faecium NRRL B-2354 always had higher heat resistance compared to Salmonella at all conditions evaluated in this study. However, the patterns of contour plots showing the effect of various product and process parameters on inactivation of E. faecium NRRL B-2354 was different from that of Salmonella. Although E. faecium NRRL B-2354 may be an acceptable surrogate for extrusion of low-moisture products due to higher resistance than Salmonella, another surrogate with similar inactivation behavior may be preferred and needs to be identified. PRACTICAL APPLICATION Food Safety Modernization Act requires the food industry to validate processing interventions. This study validated extrusion processing and demonstrated that E. faecium NRRL B-2354 is an acceptable surrogate for extrusion of low-moisture products. The developed response surface model allows the industry to identify process conditions to achieve a desired lethality for their products based on composition.
Collapse
Affiliation(s)
- Tushar Verma
- Dept. of Food Science and Technology, Univ. of Nebraska-Lincoln, Lincoln, NE 68508, U.S.A
| | - Xinyao Wei
- Dept. of Food Science and Technology, Univ. of Nebraska-Lincoln, Lincoln, NE 68508, U.S.A
| | - Soon Kiat Lau
- Dept. of Food Science and Technology, Univ. of Nebraska-Lincoln, Lincoln, NE 68508, U.S.A
| | - Andreia Bianchini
- Dept. of Food Science and Technology, Univ. of Nebraska-Lincoln, Lincoln, NE 68508, U.S.A.,Food Processing Center, Univ. of Nebraska-Lincoln, Lincoln, NE 68508, U.S.A
| | - Kent M Eskridge
- Dept. of Statistics, Univ. of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| | - Jeyamkondan Subbiah
- Dept. of Food Science and Technology, Univ. of Nebraska-Lincoln, Lincoln, NE 68508, U.S.A.,Dept. of Biological Systems Engineering, Univ. of Nebraska-Lincoln, NE 68583-0526, U.S.A
| |
Collapse
|
26
|
Li R, Kou X, Zhang L, Wang S. Inactivation kinetics of food-borne pathogens subjected to thermal treatments: a review. Int J Hyperthermia 2018; 34:177-188. [DOI: 10.1080/02656736.2017.1372643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Rui Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Xiaoxi Kou
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Lihui Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, China
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
27
|
Dry-inoculation method for thermal inactivation studies in wheat flour using freeze-dried Enterococcus faecium NRRL B-2354. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
28
|
Liu S, Ozturk S, Xu J, Kong F, Gray P, Zhu MJ, Sablani SS, Tang J. Microbial validation of radio frequency pasteurization of wheat flour by inoculated pack studies. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.08.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Cheng T, Li R, Kou X, Wang S. Influence of controlled atmosphere on thermal inactivation of Escherichia coli ATCC 25922 in almond powder. Food Microbiol 2017; 64:186-194. [DOI: 10.1016/j.fm.2017.01.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/03/2017] [Accepted: 01/15/2017] [Indexed: 12/29/2022]
|
30
|
Drying and decontamination of raw pistachios with sequential infrared drying, tempering and hot air drying. Int J Food Microbiol 2017; 246:85-91. [DOI: 10.1016/j.ijfoodmicro.2017.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/21/2017] [Accepted: 02/07/2017] [Indexed: 11/21/2022]
|
31
|
Wilson SA, Okeyo AA, Olatunde GA, Atungulu GG. Radiant heat treatments for corn drying and decontamination. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- S. A. Wilson
- Department of Food Science; University of Arkansas Division of Agriculture, 2650 N Young Avenue; Fayetteville AR 72704
| | - A. A. Okeyo
- Department of Food Science; University of Arkansas Division of Agriculture, 2650 N Young Avenue; Fayetteville AR 72704
| | - G. A. Olatunde
- Department of Food Science; University of Arkansas Division of Agriculture, 2650 N Young Avenue; Fayetteville AR 72704
| | - G. G. Atungulu
- Department of Food Science; University of Arkansas Division of Agriculture, 2650 N Young Avenue; Fayetteville AR 72704
| |
Collapse
|
32
|
|
33
|
Lacombe A, Niemira BA, Sites J, Boyd G, Gurtler JB, Tyrell B, Fleck M. Reduction of Bacterial Pathogens and Potential Surrogates on the Surface of Almonds Using High-Intensity 405-Nanometer Light. J Food Prot 2016; 79:1840-1845. [PMID: 28221904 DOI: 10.4315/0362-028x.jfp-15-418] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The disinfecting properties of high-intensity monochromatic blue light (MBL) were investigated against Escherichia coli O157:H7, Salmonella , and nonpathogenic bacteria inoculated onto the surface of almonds. MBL was generated from an array of narrow-band 405-nm light-emitting diodes. Almonds were inoculated with higher or lower levels (8 or 5 CFU/g) of pathogenic E. coli O157:H7 and Salmonella , as well as nonpathogenic E. coli K-12 and an avirulent strain of Salmonella Typhimurium, for evaluation as potential surrogates for their respective pathogens. Inoculated almonds were treated with MBL for 0, 1, 2, 4, 6, 8, and 10 min at a working distance of 7 cm. Simultaneous to treatment, cooling air was directed onto the almonds at a rate of 4 ft3/min (1.89 ×10-3 m3/s), sourced through a container of dry ice. An infrared camera was used to monitor the temperature readings after each run. For E. coli K-12, reductions of up to 1.85 or 1.63 log CFU/g were seen for higher and lower inoculum levels, respectively; reductions up to 2.44 and 1.44 log CFU/g were seen for E. coli O157:H7 (higher and lower inoculation levels, respectively). Attenuated Salmonella was reduced by up to 0.54 and 0.97 log CFU/g, whereas pathogenic Salmonella was reduced by up to 0.70 and 0.55 log CFU/g (higher and lower inoculation levels, respectively). Inoculation level did not significantly impact minimum effective treatment times, which ranged from 1 to 4 min. Temperatures remained below ambient throughout treatment, indicating that MBL is a nonthermal antimicrobial process. The nonpathogenic strains of E. coli and Salmonella each responded to MBL in a comparable manner to their pathogenic counterparts. These results suggest that these nonpathogenic strains may be useful in experiments with MBL in which a surrogate is required, and that MBL warrants further investigation as a potential antimicrobial treatment for low-moisture foods.
Collapse
Affiliation(s)
- Alison Lacombe
- National College of Natural Medicine, 014 Southeast Porter Street, Portland, Oregon 97201
| | - Brendan A Niemira
- Food Safety and Intervention Technologies Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| | - Joseph Sites
- Food Safety and Intervention Technologies Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| | - Glenn Boyd
- Food Safety and Intervention Technologies Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| | - Joshua B Gurtler
- Food Safety and Intervention Technologies Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| | - Breanna Tyrell
- Food Safety and Intervention Technologies Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| | - Melissa Fleck
- Food Safety and Intervention Technologies Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| |
Collapse
|
34
|
|
35
|
Kou XX, Li R, Hou LX, Huang Z, Ling B, Wang SJ. Performance of a Heating Block System Designed for Studying the Heat Resistance of Bacteria in Foods. Sci Rep 2016; 6:30758. [PMID: 27465120 PMCID: PMC4964582 DOI: 10.1038/srep30758] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/08/2016] [Indexed: 11/09/2022] Open
Abstract
Knowledge of bacteria's heat resistance is essential for developing effective thermal treatments. Choosing an appropriate test method is important to accurately determine bacteria's heat resistances. Although being a major factor to influence the thermo-tolerance of bacteria, the heating rate in samples cannot be controlled in water or oil bath methods due to main dependence on sample's thermal properties. A heating block system (HBS) was designed to regulate the heating rates in liquid, semi-solid and solid foods using a temperature controller. Distilled water, apple juice, mashed potato, almond powder and beef were selected to evaluate the HBS's performance by experiment and computer simulation. The results showed that the heating rates of 1, 5 and 10 °C/min with final set-point temperatures and holding times could be easily and precisely achieved in five selected food materials. A good agreement in sample central temperature profiles was obtained under various heating rates between experiment and simulation. The experimental and simulated results showed that the HBS could provide a sufficiently uniform heating environment in food samples. The effect of heating rate on bacterial thermal resistance was evaluated with the HBS. The system may hold potential applications for rapid and accurate assessments of bacteria's thermo-tolerances.
Collapse
Affiliation(s)
- Xiao-xi Kou
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li-xia Hou
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhi Huang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Ling
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shao-jin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, USA
| |
Collapse
|
36
|
Nizamlioglu NM, Nas S. Kinetic of Color Changes in Almond (Akbadem Variety) During Roasting and Storage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2015.1086786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Nizam Mustafa Nizamlioglu
- Food Technology Department, Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, Yunus Emre Campus, Karaman, Turkey
| | - Sebahattin Nas
- Food Engineering Department, Faculty of Engineering, Pamukkale University, Kinikli Campus, Denizli, Turkey
| |
Collapse
|
37
|
Enache E, Kataoka A, Black DG, Napier CD, Podolak R, Hayman MM. Development of a Dry Inoculation Method for Thermal Challenge Studies in Low-Moisture Foods by Using Talc as a Carrier for Salmonella and a Surrogate (Enterococcus faecium). J Food Prot 2015; 78:1106-12. [PMID: 26038899 DOI: 10.4315/0362-028x.jfp-14-396] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this study was to obtain dry inocula of Salmonella Tennessee and Enterococcus faecium, a surrogate for thermal inactivation of Salmonella in low-moisture foods, and to compare their thermal resistance and stability over time in terms of survival. Two methods of cell growth were compared: cells harvested from a lawn on tryptic soy agar (TSA-cells) and from tryptic soy broth (TSB-cells). Concentrated cultures of each organism were inoculated onto talc powder, incubated at 35 °C for 24 h, and dried for additional 24 h at room temperature (23 ± 2 °C) to achieve a final water activity of ≤ 0.55 before sieving. Cell reductions of Salmonella and E. faecium during the drying process were between 0.14 and 0.96 log CFU/g, depending on growth method used. There was no difference between microbial counts at days 1 and 30. Heat resistance of the dry inoculum on talc inoculated into a model peanut paste (50 % fat and 0.6 water activity) was determined after 1 and 30 days of preparation, using thermal death time tests conducted at 85 °C. For Salmonella, there was no significant difference between the thermal resistance (D(85 °C)) for the TSB-cells and TSA-cells (e.g. day 1 cells D(85 °C) = 1.05 and 1.07 min, respectively), and there was no significant difference in D(85 °C) between dry inocula on talc used either 1 or 30 days after preparation (P > 0.05). However, the use the dry inocula of E. faecium yielded different results: the TSB-grown cells had a significantly (P < 0.05) greater heat resistance than TSA-grown cells (e.g. D(85 °C) for TSB-cells = 3.42 min versus 2.60 min for TSA-cells). E. faecium had significantly (P < 0.05) greater heat resistance than Salmonella Tennessee regardless what cell type was used for dry inoculum preparation; therefore, it proved to be a conservative but appropriate surrogate for thermal inactivation of Salmonella in low-moisture food matrices under the tested conditions.
Collapse
Affiliation(s)
- Elena Enache
- Grocery Manufacturers Association, 1350 I Street N.W., Suite 300, Washington, D.C. 20005, USA.
| | - Ai Kataoka
- Grocery Manufacturers Association, 1350 I Street N.W., Suite 300, Washington, D.C. 20005, USA
| | - D Glenn Black
- Grocery Manufacturers Association, 1350 I Street N.W., Suite 300, Washington, D.C. 20005, USA
| | - Carla D Napier
- Grocery Manufacturers Association, 1350 I Street N.W., Suite 300, Washington, D.C. 20005, USA
| | - Richard Podolak
- Grocery Manufacturers Association, 1350 I Street N.W., Suite 300, Washington, D.C. 20005, USA
| | - Melinda M Hayman
- Grocery Manufacturers Association, 1350 I Street N.W., Suite 300, Washington, D.C. 20005, USA
| |
Collapse
|
38
|
Wang B, Khir R, Pan Z, El-Mashad H, Atungulu GG, Ma H, McHugh TH, Qu W, Wu B. Effective disinfection of rough rice using infrared radiation heating. J Food Prot 2014; 77:1538-45. [PMID: 25198845 DOI: 10.4315/0362-028x.jfp-14-020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this study was to investigate the effect of infrared (IR) heating and tempering treatments on disinfection of Aspergillus flavus in freshly harvested rough rice and storage rice. Rice samples with initial moisture contents (IMCs) of 14.1 to 27.0% (wet basis) were infected with A. flavus spores before the tests. The infected samples were heated by IR radiation to 60°C in less than 1 min, and then samples were tempered at 60°C for 5, 10, 20, 30, 60, or 120 min. High heating rates and corresponding high levels of moisture removal were achieved using IR heating. The highest total moisture removal was 5.3% for the fresh rice with an IMC of 27.0% after IR heating and then 120 min of tempering. IR heating followed by tempering for 120 min resulted in 2.5- and 8.3-log reductions of A. flavus spores in rough rice with the lowest and highest IMCs, respectively. To study the effect on disinfection of rewetting dried storage rice, the surface of the dry rice was rewetted to achieve IMCs of 14.7 to 19.4% (wet basis). The rewetting process for the dry rice had a significant effect on disinfection. IR heating followed by tempering for 60 min resulted in 7.2-log reductions in A. flavus on rewetted rough rice. The log-linear plus tail model was applied to estimate the tempering time needed to achieve a 5-log reduction of A. flavus in rice of different IMCs. At least 30 and 20 min of tempering were needed for fresh rice and rewetted rice, respectively, with the highest IMCs. The recommended conditions of simultaneous disinfection and drying for fresh rice was IR heating to 60°C followed by tempering for 120 min and natural cooling, resulting in a final MC of 16.5 to 22.0%, depending on the IMC. For the rewetted dry rice with an IMC of 19.4%, the recommended condition for disinfection and drying involved only 20 min of tempering. The final MC of the sample was 13.8%, which is a safe MC for storage rice.
Collapse
Affiliation(s)
- Bei Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu Province 212013, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Safety of the surrogate microorganism Enterococcus faecium NRRL B-2354 for use in thermal process validation. Appl Environ Microbiol 2014; 80:1899-909. [PMID: 24413604 DOI: 10.1128/aem.03859-13] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enterococcus faecium NRRL B-2354 is a surrogate microorganism used in place of pathogens for validation of thermal processing technologies and systems. We evaluated the safety of strain NRRL B-2354 based on its genomic and functional characteristics. The genome of E. faecium NRRL B-2354 was sequenced and found to comprise a 2,635,572-bp chromosome and a 214,319-bp megaplasmid. A total of 2,639 coding sequences were identified, including 45 genes unique to this strain. Hierarchical clustering of the NRRL B-2354 genome with 126 other E. faecium genomes as well as pbp5 locus comparisons and multilocus sequence typing (MLST) showed that the genotype of this strain is most similar to commensal, or community-associated, strains of this species. E. faecium NRRL B-2354 lacks antibiotic resistance genes, and both NRRL B-2354 and its clonal relative ATCC 8459 are sensitive to clinically relevant antibiotics. This organism also lacks, or contains nonfunctional copies of, enterococcal virulence genes including acm, cyl, the ebp operon, esp, gelE, hyl, IS16, and associated phenotypes. It does contain scm, sagA, efaA, and pilA, although either these genes were not expressed or their roles in enterococcal virulence are not well understood. Compared with the clinical strains TX0082 and 1,231,502, E. faecium NRRL B-2354 was more resistant to acidic conditions (pH 2.4) and high temperatures (60°C) and was able to grow in 8% ethanol. These findings support the continued use of E. faecium NRRL B-2354 in thermal process validation of food products.
Collapse
|
40
|
TRIVITTAYASIL V, TANAKA F, HAMANAKA D, UCHINO T. Inactivation Model of Mold Spores by Infrared Heating under Non-Isothermal Conditions. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2013. [DOI: 10.3136/fstr.19.979] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Pan Z, Bingol G, Brandl MT, McHugh TH. Review of Current Technologies for Reduction of Salmonella Populations on Almonds. FOOD BIOPROCESS TECH 2012. [DOI: 10.1007/s11947-012-0789-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|