1
|
Huang Z, Pang L, Li S, Su Y, Zhao Q, Zhang W, Yang X, Jiang Y. Effects of physical processing on food protein allergenicity: A focus on differences between animal and alternative proteins. Food Chem 2024; 460:140559. [PMID: 39047469 DOI: 10.1016/j.foodchem.2024.140559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
In recent years, physical technologies have been widely employed to reduce food protein allergenicity due to their simplicity and stability. This paper summarizes recent research advances in these technologies, focusing on differences in their effects on allergenicity between animal and alternative proteins. The mechanisms of allergenicity reduction and the advantages and disadvantages of these technologies were compared. It was found that heating, although affording better allergenicity reduction than non-thermal treatment technologies, affects other properties of the food. Because of their higher molecular weights and more complex structures, animal proteins are less affected by physical technologies than alternative proteins. It is worth noting that there is a scarcity of existing technology to reduce the allergenicity of food proteins, and more technologies should be explored for this purpose. In addition, better allergenicity-reducing processing technologies should be designed from the perspectives of processing conditions, technological innovations, and combined processing technologies in the future.
Collapse
Affiliation(s)
- Zhen Huang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Shihang Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Yue Su
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Qi Zhao
- Inner Mongolia Yili Industrial Group Limited by Share Ltd
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
2
|
Siddiqui SA, Khan S, Bahmid NA, Nagdalian AA, Jafari SM, Castro-Muñoz R. Impact of high-pressure processing on the bioactive compounds of milk - A comprehensive review. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1632-1651. [PMID: 39049911 PMCID: PMC11263445 DOI: 10.1007/s13197-024-05938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 11/12/2023] [Accepted: 01/17/2024] [Indexed: 07/27/2024]
Abstract
High-pressure processing (HPP) is a promising alternative to thermal pasteurization. Recent studies highlighted the effectivity of HPP (400-600 MPa and exposure times of 1-5 min) in reducing pathogenic microflora for up to 5 logs. Analysis of modern scientific sources has shown that pressure affects the main components of milk including fat globules, lactose, casein micelles. The behavior of whey proteins under HPP is very important for milk and dairy products. HPP can cause significant changes in the quaternary (> 150 MPa) and tertiary (> 200 MPa) protein structures. At pressures > 400 MPa, they dissolve in the following order: αs2-casein, αs1-casein, k-casein, and β-casein. A similar trend is observed in the processing of whey proteins. HPP can affect the rate of milk fat adhering as cream with increased results at 100-250 MPa with time dependency while decreasing up to 70% at 400-600 MPa. Some studies indicated the lactose influencing casein on HP, with 10% lactose addition in case in suspension before exposing it to 400 MPa for 40 min prevents the formation of large casein micelles. Number of researches has shown that moderate pressures (up to 400 MPa) and mild heating can activate or stabilize milk enzymes. Pressures of 350-400 MPa for 100 min can boost the activity of milk enzymes by up to 140%. This comprehensive and critical review will benefit scientific researchers and industrial experts in the field of HPP treatment of milk and its effect on milk components. Graphical abstract
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL E.V.), Prof.-Von-Klitzing-Straße 7, 49610 Quakenbrück, Germany
| | - Sipper Khan
- Institute of Agricultural Engineering, Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), 55961 Yogyakarta, Indonesia
| | | | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Iran Food and Drug Administration, Halal Research Center of IRI, Ministry of Health and Medical Education, Tehran, Iran
| | - Roberto Castro-Muñoz
- Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, 80–233 Gdansk, Poland
| |
Collapse
|
3
|
Wang W, Yang P, Rao L, Zhao L, Wu X, Wang Y, Liao X. Effect of high hydrostatic pressure processing on the structure, functionality, and nutritional properties of food proteins: A review. Compr Rev Food Sci Food Saf 2022; 21:4640-4682. [PMID: 36124402 DOI: 10.1111/1541-4337.13033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Proteins are important food ingredients that possess both functional and nutritional properties. High hydrostatic pressure (HHP) is an emerging nonthermal food processing technology that has been subject to great advancements in the last two decades. It is well established that pressure can induce changes in protein folding and oligomerization, and consequently, HHP has the potential to modify the desired protein properties. In this review article, the research progress over the last 15 years regarding the effect of HHP on protein structures, as well as the applications of HHP in modifying protein functionalities (i.e., solubility, water/oil holding capacity, emulsification, foaming and gelation) and nutritional properties (i.e., digestibility and bioactivity) are systematically discussed. Protein unfolding generally occurs during HHP treatment, which can result in increased conformational flexibility and the exposure of interior residues. Through the optimization of HHP and environmental conditions, a balance in protein hydrophobicity and hydrophilicity may be obtained, and therefore, the desired protein functionality can be improved. Moreover, after HHP treatment, there might be greater accessibility of the interior residues to digestive enzymes or the altered conformation of specific active sites, which may lead to modified nutritional properties. However, the practical applications of HHP in developing functional protein ingredients are underutilized and require more research concerning the impact of other food components or additives during HHP treatment. Furthermore, possible negative impacts on nutritional properties of proteins and other compounds must be also considered.
Collapse
Affiliation(s)
- Wenxin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Peiqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lei Rao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Key laboratory for Food Non-Thermal Processing, Beijing, China.,National Engineering Research Center for Fruit & Vegetable Processing, Beijing, China.,Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
4
|
Gharbi N, Marciniak A, Doyen A. Factors affecting the modification of bovine milk proteins in high hydrostatic pressure processing: An updated review. Compr Rev Food Sci Food Saf 2022; 21:4274-4293. [PMID: 35904187 DOI: 10.1111/1541-4337.13012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/17/2022] [Accepted: 07/03/2022] [Indexed: 01/28/2023]
Abstract
High hydrostatic pressure (HHP) treatment induces structural changes in bovine milk proteins depending on factors such as the temperature, pH, concentration, decompression rate, cycling, composition of the medium and pressure level and duration. An in-depth understanding of the impact of these factors is important for controlling HHP-induced modification of milk proteins and the interactions within or between them, which can be applied to prevent undesired aggregation, gelation, and precipitation during HHP processing or to obtain specific milk protein modifications to attain specific protein properties. In this regard, understanding the influences of these factors can provide insight into the modulation and optimization of HHP conditions to attain specific milk protein structures. In recent years, there has been a great research attention on HHP-induced changes in milk proteins influenced by factors such as pH, temperature, concentration, cycling, decompression condition, and medium composition. Hence, to provide insight into how these factors control milk protein structures under HHP treatment and to understand if their effects depend on HHP parameters and environmental conditions, this review discusses recent findings on how various factors (pH, temperature, cycling, decompression rate, medium composition, and concentration) affect HHP-induced bovine milk protein modification. Practical Application: The information provided in this review will be very useful to anticipate the challenges related to the formulation and development of pressure-treated milk and dairy products.
Collapse
Affiliation(s)
- Negar Gharbi
- Departement of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Canada
| | - Alice Marciniak
- Department of Food Science, University of Guelph, Guelph, Canada
| | - Alain Doyen
- Departement of Food Sciences, Institute of Nutrition and Functional Foods (INAF) and Dairy Science and Technology Research Centre (STELA), Laval University, Quebec City, Canada
| |
Collapse
|
5
|
Larrea-Wachtendorff D, Sousa I, Ferrari G. Starch-Based Hydrogels Produced by High-Pressure Processing (HPP): Effect of the Starch Source and Processing Time. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09264-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Razi SM, Motamedzadegan A, Matia-Merino L, Shahidi SA, Rashidinejad A. The effect of pH and high-pressure processing (HPP) on the rheological properties of egg white albumin and basil seed gum mixtures. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Vatankhah H, Ramaswamy HS. High pressure impregnation of oil in water emulsions into selected fruits: A novel approach to fortify plant-based biomaterials by lipophilic compounds. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.11.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
High pressure impregnation (HPI) of apple cubes: Effect of pressure variables and carrier medium. Food Res Int 2019; 116:320-328. [DOI: 10.1016/j.foodres.2018.08.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 08/05/2018] [Accepted: 08/18/2018] [Indexed: 11/18/2022]
|
9
|
Modeling water partition in composite gels of BSA with gelatin following high pressure treatment. Food Chem 2018; 265:32-38. [DOI: 10.1016/j.foodchem.2018.05.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 11/17/2022]
|
10
|
Modeling counterion partition in composite gels of BSA with gelatin following thermal treatment. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Maresca P, Ferrari G, Leite Júnior BRDC, Zanphorlin LM, Ribeiro LR, Murakami MT, Cristianini M. Effect of dynamic high pressure on functional and structural properties of bovine serum albumin. Food Res Int 2017; 99:748-754. [DOI: 10.1016/j.foodres.2017.06.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
|
12
|
Modelling of the kinetics of Bovine Serum Albumin enzymatic hydrolysis assisted by high hydrostatic pressure. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
De Maria S, Ferrari G, Maresca P. Effect of high hydrostatic pressure on the enzymatic hydrolysis of bovine serum albumin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:3151-3158. [PMID: 27885680 DOI: 10.1002/jsfa.8157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/20/2016] [Accepted: 11/20/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The extent of enzymatic proteolysis mainly depends on accessibility of the peptide bonds, which stabilize the protein structure. The high hydrostatic pressure (HHP) process is able to induce, at certain operating conditions, protein displacement, thus suggesting that this technology can be used to modify protein resistance to the enzymatic attack. This work aims at investigating the mechanism of enzymatic hydrolysis assisted by HHP performed under different processing conditions (pressure level, treatment time). Bovine serum albumin was selected for the experiments, solubilized in sodium phosphate buffer (25 mg mL-1 , pH 7.5) with α-chymotrypsin or trypsin (E/S ratio = 1/10) and HPP treatment (100-500 MPa, 15-25 min). RESULTS HHP treatment enhanced the extent of the hydrolysis reaction of globular proteins, being more effective than conventional hydrolysis. At HHP treatment conditions maximizing the protein unfolding, the hydrolysis degree of proteins was increased as a consequence of the increased exposure of peptide bonds to the attack of proteolytic enzymes. The maximum hydrolysis degree (10% and 7% respectively for the samples hydrolyzed with α-chymotrypsin and trypsin) was observed for the samples processed at 400 MPa for 25 min. At pressure levels higher than 400 MPa the formation of aggregates was likely to occur; thus the degree of hydrolysis decreased. CONCLUSION Protein unfolding represents the key factor controlling the efficiency of HHP-assisted hydrolysis treatments. The peptide produced under high pressure showed lower dimensions and a different structure with respect to those of the hydrolysates obtained when the hydrolysis was carried out at atmospheric pressure, thus opening new frontiers of application in food science and nutrition. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Serena De Maria
- Department of Industrial Engineering, University of Salerno, Fisciano, (SA), Italy
| | - Giovanna Ferrari
- Department of Industrial Engineering, University of Salerno, Fisciano, (SA), Italy
- ProdAl Scarl, Fisciano, (SA), Italy
| | | |
Collapse
|
14
|
Dynamics of fluid migration into porous solid matrix during high pressure treatment. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Ambrosi V, Polenta G, Gonzalez C, Ferrari G, Maresca P. High hydrostatic pressure assisted enzymatic hydrolysis of whey proteins. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Wei Y, Lin Y, Xie R, Xu Y, Yao J, Zhang J. The flow behavior, thixotropy and dynamical viscoelasticity of fenugreek gum. J FOOD ENG 2015. [DOI: 10.1016/j.jfoodeng.2015.05.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|