1
|
West S, Monteyne AJ, Whelehan G, Abdelrahman DR, Murton AJ, Finnigan TJ, Mandalari G, Booth C, Wilde PJ, Stephens FB, Wall BT. High-Moisture Extrusion of a Dietary Protein Blend Impairs In Vitro Digestion and Delays In Vivo Postprandial Plasma Amino Acid Availability in Humans. J Nutr 2024; 154:2053-2064. [PMID: 38797481 PMCID: PMC11282500 DOI: 10.1016/j.tjnut.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Industrial processing can alter the structural complexity of dietary proteins and, potentially, their digestion and absorption upon ingestion. High-moisture extrusion (HME), a common processing method used to produce meat alternative products, affects in vitro digestion, but human data are lacking. We hypothesized that HME of a mycoprotein/pea protein blend would impair in vitro digestion and in vivo postprandial plasma amino acid availability. METHODS In Study A, 9 healthy volunteers completed 2 experimental trials in a randomized, double-blind, crossover design. Participants consumed a beverage containing 25 g protein from a "dry" blend (CON) of mycoprotein/pea protein (39%/61%) or an HME content-matched blend (EXT). Arterialized venous blood samples were collected in the postabsorptive state and regularly over a 5-h postprandial period to assess plasma amino acid concentrations. In Study B, in vitro digestibility of the 2 beverages were assessed using bicinchoninic acid assay and optical fluorescence microscopy at baseline and during and following gastric and intestinal digestion using the INFOGEST model of digestion. RESULTS Protein ingestion increased plasma total, essential (EAA), and branched-chain amino acid (BCAA) concentrations (time effect, P < 0.0001) but more rapidly and to a greater magnitude in the CON compared with the EXT condition (condition × time interaction, P < 0.0001). This resulted in greater plasma availability of EAA and BCAA concentrations during the early postprandial period (0-150 min). These data were corroborated by the in vitro approach, which showed greater protein availability in the CON (2150 ± 129 mg/mL) compared with the EXT (590 ± 41 mg/mL) condition during the gastric phase. Fluorescence microscopy revealed clear structural differences between the 2 conditions. CONCLUSIONS These data demonstrate that HME delays in vivo plasma amino acid availability following ingestion of a mycoprotein/pea protein blend. This is likely due to impaired gastric phase digestion as a result of HME-induced aggregate formation in the pea protein. This trial was registered at clinicaltrials.gov as NCT05584358.
Collapse
Affiliation(s)
- Sam West
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom; Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom; NIHR Oxford Biomedical Research Centre, Oxford, University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Alistair J Monteyne
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Gráinne Whelehan
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Doaa R Abdelrahman
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, United States; Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, United States
| | - Andrew J Murton
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, United States; Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, United States
| | | | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Catherine Booth
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Peter J Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Francis B Stephens
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Benjamin T Wall
- Department of Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
2
|
Sui X, Zhang T, Zhang X, Jiang L. High-Moisture Extrusion of Plant Proteins: Fundamentals of Texturization and Applications. Annu Rev Food Sci Technol 2024; 15:125-149. [PMID: 38359947 DOI: 10.1146/annurev-food-072023-034346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The growing demand for sustainable and healthy food alternatives has led to a significant increase in interest in plant-based protein products. Among the various techniques used in creating meat analogs, high-moisture extrusion (HME) stands out as a promising technology for developing plant-based protein products that possess desirable texture and mouthfeel. During the extrusion process, plant proteins undergo a state transition, causing their rheological properties to change, thereby influencing the quality of the final extrudates. This review aims to delve into the fundamental aspects of texturizing plant proteins using HME, with a specific focus on the rheological behavior exhibited by these proteins throughout the process. Additionally, the review explores the future of HME from the perspective of novel raw materials and technologies. In summary, the objective of this review is to provide a comprehensive understanding of the potential of HME technology in the development of sustainable and nutritious plant-based protein products.
Collapse
Affiliation(s)
- Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, China; ,
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China; ,
| | - Xin Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China; ,
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, China; ,
| |
Collapse
|
3
|
Fu X, Li W, Zhang T, Li H, Zang M, Liu X. Effect of extrusion on the protein structure and digestibility of extruded soybean protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2225-2232. [PMID: 37938173 DOI: 10.1002/jsfa.13109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Extrusion is the main method for the preparation of plant-based meat. Current studies have focused on the effect of different extrusion parameters on the texture and quality of plant-based meat, but there has been less research on their digestibility. This study determined the textural properties of extruded soybean protein (ESPro) for different extrusion parameters and the digestibility after in vitro simulated digestion experiments. The effect of extrusion on the structure and digestibility of ESPro and the relationship between them were elucidated. RESULTS The results demonstrated a significant improvement in the digestibility of ESPro through extrusion, with the highest values for cohesiveness, springiness, chewiness, fibrous degree, digestibility, and proportion of digested peptides with <1 kDa molecular weight at an extrusion temperature of 160 °C and a screw speed of 30 rpm (ESPro1). In addition, β-sheet content in the secondary structure of the ESPro showed a significant negative association with ESPro digestibility. CONCLUSION In this study, extrusion could improve the digestibility of ESPro by altering the protein structure. This advancement holds the potential for more effective applications in plant-based meats. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaohang Fu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing, China
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing Academy of Food Sciences, Beijing, China
| | - Wenhui Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing, China
| | - Tianyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing, China
- Puluting (Hebei) Protein Biotechnology Research Limited Company, Handan, China
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing, China
| | - Mingwu Zang
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing Academy of Food Sciences, Beijing, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
4
|
Zhang Y, Ryu GH. Effects of Process Variables on the Physicochemical, Textural, and Structural Properties of an Isolated Pea Protein-Based High-Moisture Meat Analog. Foods 2023; 12:4413. [PMID: 38137217 PMCID: PMC10742468 DOI: 10.3390/foods12244413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
This study investigated the optimal extrusion conditions required to produce an isolated pea protein (IPP)-based meat analog. High-moisture extrusion cooking (HMEC) was performed. The effects of the moisture content (55 and 60%), barrel temperature (165 and 175 °C), and screw speed (150 and 200 rpm) on the physicochemical, textural, and structural properties of the high-moisture meat analog (HMMA) were determined. The results showed that the moisture content had a significant effect (p < 0.05) on the physicochemical and textural properties of the HMMA. A lower moisture content had significant impact (p < 0.05) on enhancing the texturization of the HMMA and the formation of fibrous structures, thereby increasing the texture profile analysis (TPA) and cutting strength of the HMMA. Protein denaturation during HMEC resulted in a lower protein solubility of the meat analog than the raw material. The content of β-sheets and β-turns in the meat analogs were higher than that in the raw material, while the content of random coils and α-helices is inversely proportional. The process variables had no significant (p > 0.05) effect on the secondary structures. In conclusion, the moisture content is the most important factor affecting the properties of HMMAs. The extrusion process variables for HMMAs are a moisture content of 55%, a barrel temperature of 175 °C, and a screw speed of 200 rpm.
Collapse
Affiliation(s)
| | - Gi Hyung Ryu
- Department of Food Science and Technology, Food and Feed Extrusion Research Center, Kongju National University, Yesan 32439, Chungnam, Republic of Korea;
| |
Collapse
|
5
|
Wang Y, Lyu B, Fu H, Li J, Ji L, Gong H, Zhang R, Liu J, Yu H. The development process of plant-based meat alternatives: raw material formulations and processing strategies. Food Res Int 2023; 167:112689. [PMID: 37087261 DOI: 10.1016/j.foodres.2023.112689] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
With the rapid growth of the world's population, the demand for meat is gradually increasing. The emergence and development of plant-based meat alternatives (PBMs) offer a good alternative to solve the environmental problems and disease problems caused by the over-consumption of meat products. Soybean is now the primary material for the production of PBMs due to its excellent gelation properties, potential from fibrous structure, balanced nutritional value, and relatively low price. Extrusion is the most widely used process for producing PBMs, and it has a remarkable effect on simulating the fibrous structure of real meat products. However, interactions related to phase transitions in protein molecules or fibrous structures during extrusion remain a challenge. Currently, PBMs do not meet people's demand for realistic meat in terms of texture, taste, and flavor. Therefore, the objectives of this review are to explore how to improve fiber structure formation in terms of raw material formulation and processing technology. Factors to improve the taste and texture of PBMs are summarized in terms of optimizing process parameters, changing the composition of raw materials, and enriching taste and flavor. It will provide a theoretical basis for the future development of PBMs.
Collapse
|
6
|
Liu Q, Wang Y, Yang Y, Yu X, Xu L, Jiao A, Jin Z. Structure, physicochemical properties and in vitro digestibility of extruded starch-lauric acid complexes with different amylose contents. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Liu Q, Liu W, Bi C, Hu X, Zhang T, Zhang L, Hu H. Clarifying the effect of rheological parameters of starch fluid on tensile properties of final extrudate in twin‐screw extrusion by numerical simulation. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Qiannan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Wei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Chao Bi
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing China
| | - Xiaojia Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Tingting Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Liang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| | - Honghai Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing China
| |
Collapse
|
8
|
Zhang J, Chen Q, Kaplan DL, Wang Q. High-moisture extruded protein fiber formation toward plant-based meat substitutes applications: Science, technology, and prospect. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Qin J, Zhao Y, Zhou J, Zhang G, Li J, Liu X. Rheological properties of transglutaminase-treated concentrated pea protein under conditions relevant to high-moisture extrusion processing. Front Nutr 2022; 9:970010. [PMID: 36034926 PMCID: PMC9412734 DOI: 10.3389/fnut.2022.970010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
At present, the structural changes of extruded materials under thermal-mechanical stress during high-moisture extrusion are still unclear. In this study, the transglutaminase (TG) treatments on the structure of pea protein isolate (PPI) under conditions relevant to high-moisture extrusion processing (50 wt% PPI at 30°C, 120°C and heated to 120°C and subsequently cooled to 30°C) was studied by using a closed cavity rheometer. Strain and frequency sweeping were carried out under various temperature conditions, and the information obtained was drawn into a texture map. Lissajous curves combined with energy dissipation ratio were introduced to characterize the nonlinear response of the samples. The results showed that the storage modulus of PPI increased with the increase of TG concentration during heat treatment. After cooling to 30°C, PPI with 0.25-1%TG could enhance the elasticity, but treating by 2% TG could inhibit the formation of disulfide bonds, the uniform development of the protein network, thus showing the "tough" character. These findings can help to better understand the relationships of material-structure during the extrusion process, and also provide help for further optimization of the quality of meat substitutes.
Collapse
Affiliation(s)
- Jianxin Qin
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Yinghan Zhao
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Guoqiang Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xiao Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Zhang Z, Zhang L, He S, Li X, Jin R, Liu Q, Chen S, Sun H. High-moisture Extrusion Technology Application in the Processing of Textured Plant Protein Meat Analogues: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2024223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zuoyong Zhang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| | - Luji Zhang
- College of Food Science, Northeast Agricultural University, Heilongjiang, Harbin, PR China
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| | - Xingjiang Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| | - Risheng Jin
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Heilongjiang, Harbin, PR China
| | | | - Hanju Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| |
Collapse
|
11
|
Machine learning assisted optimization of blending process of polyphenylene sulfide with elastomer using high speed twin screw extruder. Sci Rep 2021; 11:24079. [PMID: 34911974 PMCID: PMC8674312 DOI: 10.1038/s41598-021-03513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 12/06/2021] [Indexed: 11/08/2022] Open
Abstract
Random forest regression was applied to optimize the melt-blending process of polyphenylene sulfide (PPS) with poly(ethylene-glycidyl methacrylate-methyl acrylate) (E-GMA-MA) elastomer to improve the Charpy impact strength. A training dataset was constructed using four elastomers with different GMA and MA contents by varying the elastomer content up to 20 wt% and the screw rotation speed of the extruder up to 5000 rpm at a fixed barrel temperature of 300 °C. Besides the controlled parameters, the following measured parameters were incorporated into the descriptors for the regression: motor torque, polymer pressure, and polymer temperatures monitored by infrared-ray thermometers installed at four positions (T1 to T4) as well as the melt viscosity and elastomer particle diameter of the product. The regression without prior knowledge revealed that the polymer temperature T1 just after the first kneading block is an important parameter next to the elastomer content. High impact strength required high elastomer content and T1 below 320 °C. The polymer temperature T1 was much higher than the barrel temperature and increased with the screw speed due to the heat of shear. The overheating caused thermal degradation, leading to a decrease in the melt viscosity and an increase in the particle diameter at high screw speed. We thus reduced the barrel temperature to keep T1 around 310 °C. This increased the impact strength from 58.6 kJ m−2 as the maximum in the training dataset to 65.3 and 69.0 kJ m−2 at elastomer contents of 20 and 30 wt%, respectively.
Collapse
|
12
|
Forster SP, Dippold E, Chiang T. Twin-Screw Melt Granulation for Oral Solid Pharmaceutical Products. Pharmaceutics 2021; 13:pharmaceutics13050665. [PMID: 34066332 PMCID: PMC8148162 DOI: 10.3390/pharmaceutics13050665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
This article highlights the advantages of pharmaceutical continuous melt granulation by twin-screw extrusion. The different melt granulation process options and excipients are described and compared, and a case is made for expanded use of twin-screw melt granulation since it is a flexible and continuous process. Methods for binder selection are profiled with a focus on rheology and physical stability impacts. For twin-screw melt granulation, the mechanism of granulation and process impact on granule properties are described. Pharmaceutical applications of melt granulation ranging from immediate release of soluble and insoluble APIs, taste-masking, and sustained release formulation are reviewed, demonstrating the range of possibilities afforded by twin-screw melt granulation.
Collapse
|
13
|
Emin M, Wittek P, Schwegler Y. Numerical analysis of thermal and mechanical stress profile during the extrusion processing of plasticized starch by non-isothermal flow simulation. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Cervantes-Ramírez JE, Cabrera-Ramirez AH, Morales-Sánchez E, Rodriguez-García ME, Reyes-Vega MDLL, Ramírez-Jiménez AK, Contreras-Jiménez BL, Gaytán-Martínez M. Amylose-lipid complex formation from extruded maize starch mixed with fatty acids. Carbohydr Polym 2020; 246:116555. [DOI: 10.1016/j.carbpol.2020.116555] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/20/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
|
15
|
Pietsch VL, Werner R, Karbstein HP, Emin MA. High moisture extrusion of wheat gluten: Relationship between process parameters, protein polymerization, and final product characteristics. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.04.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Pietsch VL, Bühler JM, Karbstein HP, Emin MA. High moisture extrusion of soy protein concentrate: Influence of thermomechanical treatment on protein-protein interactions and rheological properties. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Pietsch VL, Schöffel F, Rädle M, Karbstein HP, Emin MA. High moisture extrusion of wheat gluten: Modeling of the polymerization behavior in the screw section of the extrusion process. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.10.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Pietsch VL, Karbstein HP, Emin MA. Kinetics of wheat gluten polymerization at extrusion-like conditions relevant for the production of meat analog products. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Zhang J, Liu L, Liu H, Yoon A, Rizvi SSH, Wang Q. Changes in conformation and quality of vegetable protein during texturization process by extrusion. Crit Rev Food Sci Nutr 2018; 59:3267-3280. [DOI: 10.1080/10408398.2018.1487383] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Jinchuang Zhang
- Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Institute of Food Science and Technology, Beijing, China
| | - Li Liu
- Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Institute of Food Science and Technology, Beijing, China
| | - Hongzhi Liu
- Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Institute of Food Science and Technology, Beijing, China
| | - Ashton Yoon
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Syed S. H. Rizvi
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Qiang Wang
- Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Institute of Food Science and Technology, Beijing, China
| |
Collapse
|
20
|
Improving the emulsifying properties of whey protein isolate-citrus pectin blends by a novel reactive extrusion approach. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
How does temperature govern mechanisms of starch changes during extrusion? Carbohydr Polym 2018; 184:57-65. [DOI: 10.1016/j.carbpol.2017.12.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/03/2017] [Accepted: 12/14/2017] [Indexed: 11/21/2022]
|
22
|
Emin M, Schuchmann H. A mechanistic approach to analyze extrusion processing of biopolymers by numerical, rheological, and optical methods. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Influence of processing conditions on the formation of whey protein-citrus pectin conjugates in extrusion. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2016.08.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|