1
|
Li J, Li L. Physical modification of vegetable protein by extrusion and regulation mechanism of polysaccharide on the unique functional properties of extruded vegetable protein: a review. Crit Rev Food Sci Nutr 2024; 64:11454-11467. [PMID: 37548410 DOI: 10.1080/10408398.2023.2239337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Development and utilization of high quality vegetable protein resources has become a hotspot. Food extrusion as a key technology can efficiently utilize vegetable protein. By changing the extrusion conditions, vegetable protein can obtain unique functional properties, which can meet the different needs of food processing. However, extrusion of single vegetable protein also exposes many disadvantages, such as low degree functional properties, poor quality stability and lower tissue fibrosis. Therefore, addition of polysaccharide has become a new development trend to compensate for the shortcomings of extruded vegetable protein. The unique functional properties of vegetable protein-polysaccharide conjugates (Maillard reaction products) can be achieved after extrusion due to regulation of polysaccharides and adjustment of extrusion parameters. However, the physicochemical changes caused by the intermolecular interactions between protein and polysaccharide during extrusion are complex, so control of these changes is still challenging, and further studies are needed. This review summarizes extrusion modification of vegetable proteins or polysaccharides. Next, the effect of different types of polysaccharides on vegetable proteins and its regulation mechanism during extrusion is mainly introduced, including the extrusion of starch polysaccharide-vegetable protein, and non-starch polysaccharide-vegetable protein. Finally, it also outlines the development perspectives of extruded vegetable protein-polysaccharide.
Collapse
Affiliation(s)
- Jinpeng Li
- College of Food Science, Northeast Agricultural University, Harbin, P.R. China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
2
|
Fu X, Li W, Zhang T, Li H, Zang M, Liu X. Effect of extrusion on the protein structure and digestibility of extruded soybean protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2225-2232. [PMID: 37938173 DOI: 10.1002/jsfa.13109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/21/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Extrusion is the main method for the preparation of plant-based meat. Current studies have focused on the effect of different extrusion parameters on the texture and quality of plant-based meat, but there has been less research on their digestibility. This study determined the textural properties of extruded soybean protein (ESPro) for different extrusion parameters and the digestibility after in vitro simulated digestion experiments. The effect of extrusion on the structure and digestibility of ESPro and the relationship between them were elucidated. RESULTS The results demonstrated a significant improvement in the digestibility of ESPro through extrusion, with the highest values for cohesiveness, springiness, chewiness, fibrous degree, digestibility, and proportion of digested peptides with <1 kDa molecular weight at an extrusion temperature of 160 °C and a screw speed of 30 rpm (ESPro1). In addition, β-sheet content in the secondary structure of the ESPro showed a significant negative association with ESPro digestibility. CONCLUSION In this study, extrusion could improve the digestibility of ESPro by altering the protein structure. This advancement holds the potential for more effective applications in plant-based meats. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaohang Fu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing, China
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing Academy of Food Sciences, Beijing, China
| | - Wenhui Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing, China
| | - Tianyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing, China
- Puluting (Hebei) Protein Biotechnology Research Limited Company, Handan, China
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing, China
| | - Mingwu Zang
- Beijing Key Laboratory of Meat Processing Technology, China Meat Research Center, Beijing Academy of Food Sciences, Beijing, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
3
|
Nourmohammadi N, Austin L, Chen D. Protein-Based Fat Replacers: A Focus on Fabrication Methods and Fat-Mimic Mechanisms. Foods 2023; 12:foods12050957. [PMID: 36900473 PMCID: PMC10000404 DOI: 10.3390/foods12050957] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/09/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
The increasing occurrence of obesity and other non-communicable diseases has shifted the human diet towards reduced calorie intake. This drives the market to develop low-fat/non-fat food products with limited deterioration of textural properties. Thus, developing high-quality fat replacers which can replicate the role of fat in the food matrix is essential. Among all the established types of fat replacers, protein-based ones have shown a higher compatibility with a wide range of foods with limited contribution to the total calories, including protein isolate/concentrate, microparticles, and microgels. The approach to fabricating fat replacers varies with their types, such as thermal-mechanical treatment, anti-solvent precipitation, enzymatic hydrolysis, complexation, and emulsification. Their detailed process is summarized in the present review with a focus on the latest findings. The fat-mimic mechanisms of fat replacers have received little attention compared to the fabricating methods; attempts are also made to explain the underlying principles of fat replacers from the physicochemical prospect. Finally, a future direction on the development of desirable fat replacers in a more sustainable way was also pointed out.
Collapse
Affiliation(s)
- Niloufar Nourmohammadi
- Department of Animals, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Luke Austin
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Da Chen
- Department of Animals, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
- Correspondence:
| |
Collapse
|
4
|
Zhang Z, Zhang L, He S, Li X, Jin R, Liu Q, Chen S, Sun H. High-moisture Extrusion Technology Application in the Processing of Textured Plant Protein Meat Analogues: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2024223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zuoyong Zhang
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| | - Luji Zhang
- College of Food Science, Northeast Agricultural University, Heilongjiang, Harbin, PR China
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| | - Xingjiang Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| | - Risheng Jin
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Heilongjiang, Harbin, PR China
| | | | - Hanju Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui, PR China
| |
Collapse
|
5
|
Pea protein microparticulation using extrusion cooking: Influence of extrusion parameters and drying on microparticle characteristics and sensory by application in a model milk dessert. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
Arora B, Rizvi SSH. Process optimisation and product characterisation of milk protein concentrate extrudates expanded by supercritical carbon dioxide. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Bindvi Arora
- Department of Food Science Cornell University Ithaca NY 14850 USA
| | - Syed S H Rizvi
- Department of Food Science Cornell University Ithaca NY 14850 USA
| |
Collapse
|
7
|
Shi D, Li C, Stone AK, Guldiken B, Nickerson MT. Recent Developments in Processing, Functionality, and Food Applications of Microparticulated Proteins. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1933515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dai Shi
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chenghao Li
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrea K. Stone
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Burcu Guldiken
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael T. Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
8
|
Filla JM, Stadler M, Heck A, Hinrichs J. Assessing Whey Protein Sources, Dispersion Preparation Method and Enrichment of Thermomechanically Stabilized Whey Protein Pectin Complexes for Technical Scale Production. Foods 2021; 10:foods10040715. [PMID: 33801764 PMCID: PMC8066860 DOI: 10.3390/foods10040715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022] Open
Abstract
Whey protein pectin complexes can be applied to replace fat in food products, e.g., pudding and yogurt, contributing to creaminess while adding a source of protein and fiber. Production of these complexes is usually conducted on the laboratory scale in small batches. Recently, a process using a scraped-surface heat exchanger (SSHE) has been employed; however, dispersion preparation time, feasibility of using different whey protein sources and enrichment of the complexes for subsequent drying have not been assessed. Preparing whey protein pectin dispersions by solid mixing of pectin and whey protein powders resulted in larger complexes than powders dispersed separately and subsequently mixed after a hydration time. Dispersions without hydration of the mixed dispersions before thermomechanical treatment had the largest particle sizes. The targeted particle size of d90,3 < 10 µm, an important predictor for creaminess, was obtained for five of the six tested whey protein sources. Dispersions of complexes prepared using whey protein powders had larger particles, with less particle volume in the submicron range, than those prepared using whey protein concentrates. Efficiency of complex enrichment via acid-induced aggregation and subsequent centrifugation was assessed by yield and purity of protein in the pellet and pectin in the supernatant.
Collapse
|
9
|
Quevedo M, Kulozik U, Karbstein HP, Emin MA. Influence of Thermomechanical Treatment and Ratio of β-Lactoglobulin and α-Lactalbumin on the Denaturation and Aggregation of Highly Concentrated Whey Protein Systems. Foods 2020; 9:E1196. [PMID: 32872486 PMCID: PMC7555948 DOI: 10.3390/foods9091196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 11/22/2022] Open
Abstract
The influence of thermomechanical treatment (temperature 60 °C-100 °C and shear rate 0.06 s-1-50 s-1) and mixing ratio of β-lactoglobulin (βLG) and α-lactalbumin (αLA) (5:2 and 1:1) on the denaturation and aggregation of whey protein model systems with a protein concentration of 60% and 70% (w/w) was investigated. An aggregation onset temperature was determined at approx. 80 °C for both systems (5:2 and 1:1 mixing ratio) with a protein concentration of 70% at a shear rate of 0.06 s-1. Increasing the shear rate up to 50 s-1 led to a decrease in the aggregation onset temperature independent of the mixing ratio. By decreasing the protein concentration to 60% in unsheared systems, the aggregation onset temperature decreased compared to that at a protein concentration of 70%. Furthermore, two significantly different onset temperatures were determined when the shear rate was increased to 25 s-1 and 50 s-1, which might result from a shear-induced phase separation. Application of combined thermal and mechanical treatment resulted in overall higher degrees of denaturation independent of the mixing ratio and protein concentration. At the conditions applied, the aggregation of the βLG and αLA mixtures was mainly due to the formation of non-covalent bonds. Although the proportion of disulfide bond aggregation increased with treatment temperature and shear rate, it was higher at a mixing ratio of 5:2 compared to that at 1:1.
Collapse
Affiliation(s)
- Maria Quevedo
- Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (M.Q.); (H.P.K.)
| | - Ulrich Kulozik
- Chair of Food and Bioprocess Engineering, Technical University of Munich, 85354 Freising, Germany;
| | - Heike P. Karbstein
- Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (M.Q.); (H.P.K.)
| | - M. Azad Emin
- Institute of Process Engineering in Life Sciences, Chair of Food Process Engineering, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (M.Q.); (H.P.K.)
| |
Collapse
|
10
|
Quevedo M, Kulozik U, Karbstein HP, Emin MA. Effect of thermomechanical treatment on the aggregation behaviour and colloidal functionality of β-Lactoglobulin at high concentrations. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Investigation on the influence of high protein concentrations on the thermal reaction behaviour of β-lactoglobulin by experimental and numerical analyses. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Sedaghat Doost A, Nikbakht Nasrabadi M, Wu J, A'yun Q, Van der Meeren P. Maillard conjugation as an approach to improve whey proteins functionality: A review of conventional and novel preparation techniques. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Pietsch VL, Bühler JM, Karbstein HP, Emin MA. High moisture extrusion of soy protein concentrate: Influence of thermomechanical treatment on protein-protein interactions and rheological properties. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Protte K, Ruf T, Atamer Z, Sonne A, Weiss J, Hinrichs J. Influence of shear stress, pectin type and calcium chloride on the process stability of thermally stabilised whey protein–pectin complexes. FOOD STRUCTURE-NETHERLANDS 2017. [DOI: 10.1016/j.foostr.2017.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Wolz M, Kulozik U. System parameters in a high moisture extrusion process for microparticulation of whey proteins. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|