1
|
Xue H, Zhao J, Wang Y, Shi Z, Xie K, Liao X, Tan J. Factors affecting the stability of anthocyanins and strategies for improving their stability: A review. Food Chem X 2024; 24:101883. [PMID: 39444439 PMCID: PMC11497485 DOI: 10.1016/j.fochx.2024.101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Anthocyanins, as the most common and widely distributed flavonoid compounds, are widely present in fruits and vegetables. Anthocyanins show various biological activities including antioxidant, anticancer, anti-inflammatory, antibacterial, and immunomodulatory activities. Hence, anthocyanins are widely used in the fields of food and pharmaceuticals. However, anthocyanins are susceptible to environmental and processing factors due to their structural characteristics, which leads to poor storage and processing stability. Numerous studies have indicated that structural modification, co-pigmentation, and delivery systems could improve the stability and bioavailability of anthocyanins in the external environment. This article reviews the main factors affecting the stability of anthocyanins. Moreover, this review comprehensively introduces methods to improve the stability of anthocyanins. Finally, the current problems and future research advances of anthocyanins are also introduced. The findings can provide important references for deeper research on the stability, biological activities, and bioavailability of anthocyanins.
Collapse
Affiliation(s)
- Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jianduo Zhao
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Zhangmeng Shi
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Kaifang Xie
- College of Textile and Fashion, Hunan Institute of Engineering, NO. 88 East Fuxing Road, Yuetang District, Xiangtan 411100, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
- Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding, 071002, China
| |
Collapse
|
2
|
Liang T, Jing P, He J. Nano techniques: an updated review focused on anthocyanin stability. Crit Rev Food Sci Nutr 2024; 64:11985-12008. [PMID: 37574589 DOI: 10.1080/10408398.2023.2245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Anthocyanins (ACNs) are one of the subgroups of flavonoids and getting intensive attraction due to the nutritional values. However, their application of ACNs is limited due to their poor stability and bioavailability. Accordingly, nanoencapsulation has been developed to enhance its stability and bio-efficacy. This review focuses on the nano-technique applications of delivery systems that be used for ACNs stabilization, with an emphasis on physicochemical stability and health benefits. ACNs incorporated with delivery systems in forms of nano-particles and fibrils can achieve advanced functions, such as improved stability, enhanced bioavailability, and controlled release. Also, the toxicological evaluation of nano delivery systems is summarized. Additionally, this review summarizes the challenges and suggests the further perspectives for the further application of ACNs delivery systems in food and medical fields.
Collapse
Affiliation(s)
- Tisong Liang
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian He
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China
| |
Collapse
|
3
|
Tomas M, Wen Y, Liao W, Zhang L, Zhao C, McClements DJ, Nemli E, Bener M, Apak R, Capanoglu E. Recent progress in promoting the bioavailability of polyphenols in plant-based foods. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38590257 DOI: 10.1080/10408398.2024.2336051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Polyphenols are important constituents of plant-based foods, exhibiting a range of beneficial effects. However, many phenolic compounds have low bioavailability because of their low water solubility, chemical instability, food matrix effects, and interactions with other nutrients. This article reviews various methods of improving the bioavailability of polyphenols in plant-based foods, including fermentation, natural deep eutectic solvents, encapsulation technologies, co-crystallization and amorphous solid dispersion systems, and exosome complexes. Several innovative technologies have recently been deployed to improve the bioavailability of phenolic compounds. These technologies may be utilized to increase the healthiness of plant-based foods. Further research is required to better understand the mechanisms of action of these novel approaches and their potential to be used in food production.
Collapse
Affiliation(s)
- Merve Tomas
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Liao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lizhu Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Elifsu Nemli
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| | - Mustafa Bener
- Department of Chemistry, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Resat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Türkiye
- Turkish Academy of Sciences (TUBA), Ankara, Türkiye
| | - Esra Capanoglu
- Department of Food Engineering, Istanbul Technical University, Maslak, Istanbul, Türkiye
| |
Collapse
|
4
|
Kopjar M, Buljeta I, Ćorković I, Kelemen V, Pichler A, Ivić I, Šimunović J. Dairy-Protein-Based Aggregates as Additives Enriched with Tart Cherry Polyphenols and Flavor Compounds. Foods 2023; 12:foods12112104. [PMID: 37297349 DOI: 10.3390/foods12112104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Nowadays, the development of innovative food products with positive health effects is on the rise. Consequently, the aim of this study was a formulation of aggregates based on tart cherry juice and dairy protein matrix to investigate whether different amounts (2% and 6%) of protein matrix have an impact on the adsorption of polyphenols as well as on the adsorption of flavor compounds. Formulated aggregates were investigated through high-performance liquid chromatography, spectrophotometric methods, gas chromatography and Fourier transform infrared spectrometry. The obtained results revealed that with an increase in the amount of protein matrix used for the formulation of aggregates, a decrease in the adsorption of polyphenols occurred, and, consequently, the antioxidant activity of the formulated aggregates was lower. The amount of protein matrix additionally affected the adsorption of flavor compounds; thus the formulated aggregates differed in their flavor profiles in comparison with tart cherry juice. Adsorption of both phenolic and flavor compounds caused changes in the protein structure, as proven by recording IR spectra. Formulated dairy-protein-based aggregates could be used as additives which are enriched with tart cherry polyphenols and flavor compounds.
Collapse
Affiliation(s)
- Mirela Kopjar
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Ivana Buljeta
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Ina Ćorković
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Vanja Kelemen
- Teaching Institute of Public Health Osijek-Baranja County, Franje Krežme 1, 31000 Osijek, Croatia
| | - Anita Pichler
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Ivana Ivić
- Faculty of Food Technology, Josip Juraj Strossmayer University, F. Kuhača 18, 31000 Osijek, Croatia
| | - Josip Šimunović
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695-7624, USA
| |
Collapse
|
5
|
Separation of α-Lactalbumin Enriched Fraction from Bovine Native Whey Concentrate by Combining Membrane and High-Pressure Processing. Foods 2023; 12:foods12030480. [PMID: 36766009 PMCID: PMC9914712 DOI: 10.3390/foods12030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Whey exhibits interesting nutritional properties, but its high β-Lactoglobulin (β-Lg) content could be a concern in infant food applications. In this study, high-pressure processing (HPP) was assessed as a β-Lg removal strategy to generate an enriched α-Lactalbumin (α-La) fraction from bovine native whey concentrate. Different HPP treatment parameters were considered: initial pH (physiological and acidified), sample temperature (7-35 °C), pressure (0-600 MPa) and processing time (0-490 s). The conditions providing the best α-La yield and α-La purification degree balance (46.16% and 80.21%, respectively) were 4 min (600 MPa, 23 °C), despite the significant decrease of the surface hydrophobicity and the total thiol content indexes in the α-La-enriched fraction. Under our working conditions, the general effects of HPP on α-La and β-Lg agreed with results reported in other studies of cow milk or whey. Notwithstanding, our results also indicated that the use of native whey concentrate could improve the β-Lg precipitation degree and the α-La purification degree, in comparison to raw milk or whey. Future studies should include further characterization of the α-La-enriched fraction and the implementation of membrane concentration and HPP treatment to valorize cheese whey.
Collapse
|
6
|
Wu H, Oliveira G, Lila MA. Protein-binding approaches for improving bioaccessibility and bioavailability of anthocyanins. Compr Rev Food Sci Food Saf 2023; 22:333-354. [PMID: 36398759 DOI: 10.1111/1541-4337.13070] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/29/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
Color is an important characteristic of food. Over the last 15 years, more attention has been paid to natural colorants because of the rising demand for clean-label food products. Anthocyanins, which are a group of phytochemicals responsible for the purple, blue or red hues of many plants, offer a market advantage. In addition, anthocyanin-rich foods are associated with protection against cardiovascular disease, thrombosis, diabetes, cancer, microbial-based disorders, neurological disorders, and vision ailments. However, the real health value of anthocyanins, whether as a natural colorant or a functional ingredient, is dependent on the ultimate bioaccessibility and bioavailability in the human body. Many animal and human clinical studies revealed that, after intake of anthocyanin-rich foods or anthocyanin extracts, only trace amounts (< 1% of ingested content) of anthocyanins or their predicted metabolites were detected in plasma after a standard blood draw, which was indicative of low bioavailability of anthocyanins. Protein binding to anthocyanins is a strategy that has recently been reported to enhance the ultimate bioactivity, bioaccessibility, and bioavailability of anthocyanins as compared to anthocyanins delivered without a protein carrier. Therefore, in this review, we address anthocyanin properties in food processing and digestion, anthocyanin-protein complexes used in food matrices, and changes in the bioaccessibility and bioavailability of anthocyanins when bound into anthocyanin-protein complexes in foods. Finally, we summarize the challenges and prospects of this delivery system for anthocyanin pigments.
Collapse
Affiliation(s)
- Haizhou Wu
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Gabriel Oliveira
- Department of Food Science, Federal University of Minas Gerais, Brazil
| | - Mary Ann Lila
- Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| |
Collapse
|
7
|
Li W, Gong P, Xu M, Li D, Sun J, Zhou D, Zhu B. Isolation and characterization of the anthocyanins derived from red radishes (Raphanus sativus L.) and the protective ability of β-lactoglobulin against heat-induced oxidation. J Food Sci 2022; 87:1586-1600. [PMID: 35262931 DOI: 10.1111/1750-3841.16083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 01/21/2023]
Abstract
This study employed the "two-step dialysis" method and AB-8 or D101 macroporous resin chromatography to isolate the anthocyanins in red radishes (ARR). The red radish juice was dialyzed twice at 3000 and 500 Da, respectively. UHPLC-QqQ-MS/MS revealed 24 types of ARRs, of which pelargonidin (Pg)-3-diglucoside-5-(malonyl)glucoside (P3D5MG), Pg-3-diglucoside-5-glucoside (P3D5G), Pg-3-(feruloyl)diglucoside-5-(malonyl)glucoside (P3FD5MG), Pg, and malvidin (Mv) represented the main compounds. The total anthocyanin content in the ARR prepared via the "two-step dialysis" method was 29.69% and 18.44% higher than that obtained using AB-8 and D101 macroporous resins, respectively. The ARRs inhibited heat-induced β-lactoglobulin (β-Lg) oxidation. The amino acid residue microenvironment and secondary β-Lg structure were modified via ARR binding. The energy involved in P3D5MG and β-Lg binding was -392 kJ/mol, which was significantly lower than that during the binding process of P3D5M, P3FD5MG, Pg, and Mv to β-Lg (-338 to -168 kJ/mol). These results indicated that "two-step dialysis" was a promising method for deriving natural pigment with strong antioxidant activity from red radishes. PRACTICAL APPLICATION: As a natural food colorant, anthocyanins have attracted increasing attention in the food industry in recent years. This study used "two-step dialysis" to effectively separate ARRs. Moreover, the anthocyanins in ARR can bind to β-Lg to protect against heating-induced oxidation. Therefore, ARRs may not only act as a food pigment but also as antioxidants.
Collapse
Affiliation(s)
- Wenfeng Li
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China.,National Engineering Research Center of the Seafood School of Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Pengling Gong
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Mengyi Xu
- School of Life Science and Biotechnology, Yangtze Normal University, Chongqing, China
| | - Deyang Li
- National Engineering Research Center of the Seafood School of Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Jiatong Sun
- National Engineering Research Center of the Seafood School of Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Dayong Zhou
- National Engineering Research Center of the Seafood School of Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Beiwei Zhu
- National Engineering Research Center of the Seafood School of Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
8
|
Liu Y, Ma Y, Liu Y, Zhang J, Hossen MA, Sameen DE, Dai J, Li S, Qin W. Fabrication and characterization of pH-responsive intelligent films based on carboxymethyl cellulose and gelatin/curcumin/chitosan hybrid microcapsules for pork quality monitoring. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107224] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Xiang X, Sun Q, Gan N, Suo Z, Zhang S, Yao S, Xiang H, Yuan N, Li H. Interaction between berberine hydrochloride and β-lactoglobulin of two structures by heat treatment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Tosif MM, Najda A, Bains A, Krishna TC, Chawla P, Dyduch-Siemińska M, Klepacka J, Kaushik R. A Comprehensive Review on the Interaction of Milk Protein Concentrates with Plant-Based Polyphenolics. Int J Mol Sci 2021; 22:ijms222413548. [PMID: 34948345 PMCID: PMC8709213 DOI: 10.3390/ijms222413548] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
Functional properties and biological activities of plant-derived polyphenolic compounds have gained great interest due to their epidemiologically proven health benefits and diverse industrial applications in the food and pharmaceutical industry. Moreover, the food processing conditions and certain chemical reactions such as pigmentation, acylation, hydroxylation, and glycosylation can also cause alteration in the stability, antioxidant activity, and structural characteristics of the polyphenolic compounds. Since the (poly)phenols are highly reactive, to overcome these problems, the formulation of a complex of polyphenolic compounds with natural biopolymers is an effective approach. Besides, to increase the bioavailability and bioaccessibility of polyphenolic compounds, milk proteins such as whey protein concentrate, sodium caseinate, and milk protein concentrate act as natural vehicles, due to their specific structural and functional properties with high nutritional value. Therefore, milk proteins are suitable for the delivery of polyphenols to parts of the gastrointestinal tract. Therefore, this review reports on types of (poly)phenols, methods for the analysis of binding interactions between (poly)phenols-milk proteins, and structural changes that occur during the interaction.
Collapse
Affiliation(s)
- Mansuri M. Tosif
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (M.M.T.); (T.C.K.)
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, Doświadczalna Street 51A, 20-280 Lublin, Poland
- Correspondence: (A.N.); (P.C.)
| | - Aarti Bains
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences, South Campus, Jalandhar 144020, India;
| | | | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India; (M.M.T.); (T.C.K.)
- Correspondence: (A.N.); (P.C.)
| | - Magdalena Dyduch-Siemińska
- Faculty of Agrobioengineering, Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland;
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10-719 Olsztyn, Poland;
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India;
| |
Collapse
|
11
|
Tan C, Dadmohammadi Y, Lee MC, Abbaspourrad A. Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. Compr Rev Food Sci Food Saf 2021; 20:3164-3191. [PMID: 34118125 DOI: 10.1111/1541-4337.12772] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 12/31/2022]
Abstract
Copigmentation and encapsulation are the two most commonly used techniques for anthocyanin stabilization. However, each of these techniques by itself suffers from many challenges associated with the simultaneous achievement of color intensification and high stability of anthocyanins. Integrating copigmentation and encapsulation may overcome the limitation of usage of a single technique. This review summarizes the most recent studies and their challenges aiming at combining copigmentation and encapsulation techniques. The effective approaches for encapsulating copigmented anthocyanins are described, including spray/freeze-drying, emulsification, gelation, polyelectrolyte complexation, and their combinations. Other emerging approaches, such as layer-by-layer deposition and ultrasonication, are also reviewed. The physicochemical principles underlying the combined strategies for the fabrication of various delivery systems are discussed. Particular emphasis is directed toward the synergistic effects of copigmentation and encapsulation, for example, modulating roles of copigments in the processes of gelation and complexation. Finally, some of the major challenges and opportunities for future studies are highlighted. The trend of integrating copigmentation and encapsulation has been just started to develop. The information in this review should facilitate the exploration of the combination of multistrategy and the fabrication of robust delivery systems for copigmented anthocyanins.
Collapse
Affiliation(s)
- Chen Tan
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Younas Dadmohammadi
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| | - Michelle C Lee
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| | - Alireza Abbaspourrad
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, New York, USA
| |
Collapse
|
12
|
Anthocyanin-β-lactoglobulin nanoparticles in acidic media: synthesis, characterization and interaction study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Wu G, Hui X, Gong X, Tran KN, Stipkovits L, Mohan MS, Brennan MA, Brennan CS. Functionalization of bovine whey proteins by dietary phenolics from molecular-level fabrications and mixture-level combinations. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Samborska K, Boostani S, Geranpour M, Hosseini H, Dima C, Khoshnoudi-Nia S, Rostamabadi H, Falsafi SR, Shaddel R, Akbari-Alavijeh S, Jafari SM. Green biopolymers from by-products as wall materials for spray drying microencapsulation of phytochemicals. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Chen Y, Meenu M, Baojun X. A Narrative Review on Microencapsulation of Obligate Anaerobe Probiotics Bifidobacterium, Akkermansia muciniphila, and Faecalibacterium prausnitzii. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1871008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yining Chen
- Food Science and Technology Programme, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | - Maninder Meenu
- Food Science and Technology Programme, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | - Xu Baojun
- Food Science and Technology Programme, BNU-HKBU United International College, Zhuhai, Guangdong, China
| |
Collapse
|
16
|
Ma Y, Li S, Ji T, Wu W, Sameen DE, Ahmed S, Qin W, Dai J, Liu Y. Development and optimization of dynamic gelatin/chitosan nanoparticles incorporated with blueberry anthocyanins for milk freshness monitoring. Carbohydr Polym 2020; 247:116738. [DOI: 10.1016/j.carbpol.2020.116738] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
|
17
|
Nanoencapsulation of anthocyanins-loaded β-lactoglobulin nanoparticles: Characterization, stability, and bioavailability in vitro. Food Res Int 2020; 137:109635. [PMID: 33233214 DOI: 10.1016/j.foodres.2020.109635] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 08/08/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
This work aims to investigate the effect of desolvation on the stability and bioavailability of nanoparticles of β-lactoglobulin (β-Lg) and anthocyanins (AC) extracted from red raspberry pomace. Interactions between the substrates were also studied using multispectral approaches. β-Lg-nanoparticles were fabricated via heat treatment at 85 °C for 30 min before initiating the desolvation method at pH 7. This method generated monodisperse particles, nano-scale size of β-Lg, and AC-β-Lg ranged from 129.13 to 351.85 nm with square morphology obtained by SEM. The AC extract was encapsulated successfully during desolvation process into β-Lg-nanoparticles with encapsulation efficiency (EE %) of ~77%. Results also showed that AC (from 1 to 13 × 10-4 M) quenched the fluorescence intensity of de-solvated β-Lg estimated to be 98%, and a binding among them occurred with a Ka-value of 7.59 × 108 M-1 at 25 °C. Addition of AC also gradually increased the antioxidant activity of β-Lg-nanoparticles with values of 82.51% at the highest AC-concentration (13 × 10-4 M) loaded on β-Lg-nanoparticles. AC-loaded β-Lg nanoparticles was more stable in mouth (pH 6.8), simulated gastric (SG, pH 2), and simulated intestinal (SI, pH 6.9) by showing high retention rate (%) than that of AC unencapsulated. Overall, de-solvated-β-Lg increased the heat-stability and bioavailability of AC, which could be further utilized in various food and pharmaceutical matrices. These findings recommend that β-Lg nanoparticles could be appropriated as delivery systems for anthocyanins.
Collapse
|
18
|
Sharif N, Khoshnoudi-Nia S, Jafari SM. Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Res Int 2020; 132:109077. [DOI: 10.1016/j.foodres.2020.109077] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/11/2020] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
|
19
|
Martínez-López AL, Pangua C, Reboredo C, Campión R, Morales-Gracia J, Irache JM. Protein-based nanoparticles for drug delivery purposes. Int J Pharm 2020; 581:119289. [PMID: 32243968 DOI: 10.1016/j.ijpharm.2020.119289] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023]
|
20
|
Tarone AG, Cazarin CBB, Marostica Junior MR. Anthocyanins: New techniques and challenges in microencapsulation. Food Res Int 2020; 133:109092. [PMID: 32466932 DOI: 10.1016/j.foodres.2020.109092] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 12/31/2022]
Abstract
Anthocyanins are a bioactive compound belonging to the flavonoid classthatis present in human nutrition through plant-based foods. Due to their antioxidant properties, several health benefits related to their consumption are reported in the literature. The stability of the color and the properties of anthocyanins is strongly affected by pH, solvent, temperature, and other environmental conditions. In addition, the insufficient residence time of anthocyanins in the upper digestive tract causes apartialabsorption, which needs to be improved. These factshave led researchers to investigate new forms of processing that provide minimal degradation. Microencapsulation is a promising possibility to stabilize anthocyanin extracts and allow their addition to food products in a more stable form. The microcapsules can still provide a prolonged gastrointestinal retention time caused by the improvement of the bioadhesive properties in the mucus covering the intestinal epithelium. Although there are efficient and emerging techniques, anthocyanins microencapsulation is still a challenge for the food industry. The purpose of this work is to provide an overview of anthocyanins structure, absorptionand protection, and to show the main conventional and emerging microencapsulation methods and their pros and cons.
Collapse
Affiliation(s)
- Adriana Gadioli Tarone
- School of Food Engineering, University of Campinas - UNICAMP, 13083-862 Campinas, SP, Brazil
| | | | | |
Collapse
|
21
|
Ma TX, Zhang L, Xu L, Ye YH, Huang T, Zhou QM, Liu HL. Mitigation of isoquercitrin on β-lactoglobulin glycation: Insight into the mechanisms by mass spectrometry and interaction analysis. Int J Biol Macromol 2019; 155:1133-1141. [PMID: 31715232 DOI: 10.1016/j.ijbiomac.2019.11.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
Formation of advanced glycation end products (AGEs) on foods imposes threats to human health after intaking. This research firstly evaluated the inhibition of isoquercitrin on β-lactoglobulin (β-Lg) glycation, the mechanisms were elucidated by fluorescence spectroscopy, Orbitrap MSn and molecular docking. Fluorescence spectra indicated that isoquercitrin effectively alleviated the formation of AGEs, it could stabilize the conformation structure of glycated β-Lg (G-β-Lg), change the micro-environment in the vicinity of chromophores. SDS-PAGE analysis revealed the suppressed cross-linking of G-β-Lg induced by isoquercitrin. The number of glycation site detected on G-β-Lg was reduced from ten to eight after the addition of isoquercitrin, and the relative glycation degree of substitution of per site (RGDSP) of most glycation sites were also greatly decreased. As indicated by intermolecular interaction, isoquercitrin quenched the fluorescence of β-Lg via a static mechanism, and their combination is an endothermic processing mainly derived by hydrophobic interaction, hydrogen bonds, and van der Waals forces. Isoquercitrin interacted with β-Lg to form an equimolar complex, and one hydrogen bond was formed between isoquercitrin and Lys69 (4.96 Å). Above results proved that isoquercitrin can be a promising anti-glycation agent used in food system to prevent the formation of harmful glycation products.
Collapse
Affiliation(s)
- Tian-Xin Ma
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Lu Zhang
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China..
| | - Liang Xu
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yun-Hua Ye
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Tao Huang
- College of Food and Pharmaceutical Science, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Qi-Ming Zhou
- Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Hai-Long Liu
- Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
22
|
Garavand F, Rahaee S, Vahedikia N, Jafari SM. Different techniques for extraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Process-Structure-Function in Association with the Main Bioactive of Black Rice Flour Sieving Fractions. Foods 2019; 8:foods8040131. [PMID: 31003565 PMCID: PMC6518182 DOI: 10.3390/foods8040131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 11/30/2022] Open
Abstract
The aim of this work was to advance knowledge on the potential use of black rice different sieving fractions for various functional applications, through proximate analysis, thermal degradation kinetics of phytochemical and characterization of the thermal behavior of the main proteins, from the perspectives of their use as a food ingredient. The results indicated that the thermal degradation of phytochemicals followed a first-order reaction kinetics for all the tested fractions. The temperature-dependent degradation was adequately modeled according to the Arrhenius equation. The calculated activation energies (Ea) and k values were different among the four studied parameters. The kinetic parameters depended on the grinding and sieving degree, the anthocyanins being the most thermolabile compounds, thus affecting the antioxidant activity. Three protein fractions were identified by electrophoresis with different molecular weight, such as albumin, globulin, and glutelin. The fluorescence spectroscopy experiments revealed the sequential character of the heat-induced conformational changes, different molecular events being suggested, such as folding in the lower temperature range and unfolding at higher temperature. The significance of the study is evidenced by the need to identify and advance the process-structure-function relationships for various biologically active compounds from the perspective of obtaining food or ingredients nutritionally optimized.
Collapse
|
24
|
Adrar NS, Madani K, Adrar S. Impact of the inhibition of proteins activities and the chemical aspect of polyphenols-proteins interactions. PHARMANUTRITION 2019. [DOI: 10.1016/j.phanu.2019.100142] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Gómez B, Barba FJ, Domínguez R, Putnik P, Bursać Kovačević D, Pateiro M, Toldrá F, Lorenzo JM. Microencapsulation of antioxidant compounds through innovative technologies and its specific application in meat processing. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.10.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Croitoru C, Mureșan C, Turturică M, Stănciuc N, Andronoiu DG, Dumitrașcu L, Barbu V, Enachi Ioniță E, Horincar Parfene G, Râpeanu G. Improvement of Quality Properties and Shelf Life Stability of New Formulated Muffins Based on Black Rice. Molecules 2018; 23:E3047. [PMID: 30469411 PMCID: PMC6278335 DOI: 10.3390/molecules23113047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Effects of partial (50%) and total replacement of wheat flour with black rice flour on the phytochemical, physico-chemical, sensorial, and textural properties of muffins were studied. Partial or total replacement of wheat flour with black rice flour in muffins improved their nutritional and antioxidative properties with a positive effect on microbiological and color stability during the storage period in accelerated conditions. The low gluten muffins had an anthocyanin content of 27.54 ± 2.22 mg cyanidin-3-glucoside (C3G)/100 g dry weight (DW), whereas the gluten free muffins had 46.11 ± 3.91 mg C3G/100 g DW, with significant antioxidant values. Retention of 60% and 64% for anthocyanins and 72% and 80% for antioxidant activity after baking was found. The fracturability and hardness scores increased with the addition of black rice flour, whereas firmness and chewiness increased for gluten free muffins. The confocal analysis revealed a tendency of glucidic components to aggregate, with gathers of small bunches of black rice starch granules comprising anthocyanin. The results allowed designing two new value added bakery products, low and free gluten muffins, with significant high amounts of bioactive compounds, suggesting the functional potential of black rice flour.
Collapse
Affiliation(s)
- Constantin Croitoru
- Academy of Agricultural and Forestry Sciences, 61 Marasti Blvd, 011464 Bucharest, Romania.
| | - Claudia Mureșan
- Faculty of Food Engineering, Tourism and Environmental Protection, Aurel Vlaicu University of Arad, 2 Elena Dragoi Street, 310330 Arad, Romania.
| | - Mihaela Turturică
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania.
| | - Nicoleta Stănciuc
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania.
| | - Doina Georgeta Andronoiu
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania.
| | - Loredana Dumitrașcu
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania.
| | - Vasilica Barbu
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania.
| | - Elena Enachi Ioniță
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania.
| | - Georgiana Horincar Parfene
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania.
| | - Gabriela Râpeanu
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domnească Street, 800201 Galati, Romania.
| |
Collapse
|
27
|
Mihalcea L, Turturică M, Barbu V, Ioniţă E, Pătraşcu L, Cotârleţ M, Dumitraşcu L, Aprodu I, Râpeanu G, Stănciuc N. Transglutaminase mediated microencapsulation of sea buckthorn supercritical CO2 extract in whey protein isolate and valorization in highly value added food products. Food Chem 2018; 262:30-38. [DOI: 10.1016/j.foodchem.2018.04.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 12/23/2022]
|
28
|
Pisoschi AM, Pop A, Cimpeanu C, Turcuş V, Predoi G, Iordache F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity - A critical view. Eur J Med Chem 2018; 157:1326-1345. [DOI: 10.1016/j.ejmech.2018.08.076] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022]
|
29
|
Shishir MRI, Xie L, Sun C, Zheng X, Chen W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.018] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Ursache FM, Andronoiu DG, Ghinea IO, Barbu V, Ioniţă E, Cotârleţ M, Dumitraşcu L, Botez E, Râpeanu G, Stănciuc N. Valorizations of carotenoids from sea buckthorn extract by microencapsulation and formulation of value-added food products. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|