1
|
Yang Z, Yan J, Xie J. Effect of vacuum and modified atmosphere packaging on moisture state, quality, and microbial communities of grouper (Epinephelus coioides) fillets during cold storage. Food Res Int 2023; 173:113340. [PMID: 37803649 DOI: 10.1016/j.foodres.2023.113340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 10/08/2023]
Abstract
The study aimed to assess the impact of different packaging methods on the moisture state, quality, and microbial composition of grouper fillets. The grouper fillets were packaged under the following four conditions: vacuum packaging (VP), 70% CO2/30% N2 (MAP1); 60% CO2/30% N2/10% O2 (MAP2); 40% CO2/30% N2/30% O2 (MAP3). Physicochemical and microbiological parameters were evaluated during 21 days of cold storage. The result demonstrated that MAP was effective in inhibiting microbial growth and accumulation of total volatile basic nitrogen (TVB-N), while also maintaining the water-holding capacity (WHC) of grouper fillets. Additionally, MAP1 effectively inhibited lipid and protein oxidation and protected the secondary structure of myofibrils compared to MAP2 and MAP3, with MAP1 samples having the lowest thiobarbituric acid reactive substances (TBARS) value (0.009-0.04 MDA/kg) and carbonyl content (0.20-0.26 μmol/g) and the highest sulfhydryl content (0.25-0.49 μmol/g) during cold storage. The results of high-throughput sequencing revealed that the presence of oxygen in the packaging system significantly influenced bacterial succession. Over time, Carnobacterium gradually became the dominant genera of fillets stored in MAP, and the presence of oxygen in MAP2 and MAP3 accelerated this transition by 9 days, compared to MAP1. In contrast, Enterobacteriaceae and Carnobacterium were the main dominant genera in VP. Remarkably, Enterobacteriaceae were virtually absent in MAP2 and MAP3 during storage, suggesting that the presence of oxygen exerted a significant inhibitory effect on Enterobacteriaceae. This study provides valuable insights into the application of MAP in the preservation of grouper fillets.
Collapse
Affiliation(s)
- Zhijun Yang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Yan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory for Quality and Safety Risk Assessment of Aquatic Products in Storage and Preservation of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory for Quality and Safety Risk Assessment of Aquatic Products in Storage and Preservation of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Rotabakk BT, Rognstad EM, Jakobsen AN, Lerfall J. The Potential of Soluble Gas Stabilization (SGS) Technology in a Simulated Post-Frying Cooling Step of Commercial Fish Cakes. Foods 2023; 12:2788. [PMID: 37509880 PMCID: PMC10379858 DOI: 10.3390/foods12142788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Soluble gas stabilization (SGS) technology is a novel way to increase the effectiveness of modified atmosphere (MA) packaging. However, SGS can be time-consuming and difficult to include in an existing process. This can be overcome by including CO2 in an existing processing step, such as the product's cooling step. A full factorial design was set up with SGS times (0.5, 1.0, and 2.0 h) and temperatures of fish cakes (chilled (0 °C) or during chilling (starting at 85 °C)) as factors. MA-packaged fish cakes were included as a control. The response was headspace gas composition at equilibrium. Headspace gas composition at equilibrium showed significantly (p < 0.05) less dissolved CO2 in hot fish cakes after 0.5 h than in cold cakes. Still, no significant differences were found between hot and cold at 1.0 and 2.0 h. Also, all SGS samples, regardless of time and temperature, had a higher content of CO2 compared to modified atmosphere packaging (MAP).
Collapse
Affiliation(s)
- Bjørn Tore Rotabakk
- Nofima AS-Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 8034, 4068 Stavanger, Norway
| | - Elena Marie Rognstad
- Department of Biotechnology and Food Science, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Jørgen Lerfall
- Department of Biotechnology and Food Science, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
3
|
Munch M, Buche P, Menut L, Cufi J, Guillard V. CO2 solubility and composition data of food products stored in data warehouse structured by an ontology. Data Brief 2023; 47:108950. [PMID: 36860408 PMCID: PMC9969261 DOI: 10.1016/j.dib.2023.108950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/07/2023] Open
Abstract
This data paper presents the values of CO2 solubility at different temperatures and main compositional parameters (protein, fat, moisture, sugars and salt content) for food products from different categories: dairy products, fishes and meats. It is the result of an extensive meta-analysis gathering the results of different major papers published on the domain on the period of 1980 to 2021, presenting the composition of 81 different food products corresponding to 362 solubility measures. For each food product, the compositional parameters were either extracted directly from the original source, or extracted from open-source databases. This dataset has also been enriched with measurements made on pure water and oil for comparison purposes. In order to ease the comparison between different sources, data have been semantized and structured by an ontology enriched with domain vocabulary. They are stored in a public repository and can be retrieved through the @Web tool, a user-friendly interface allowing to capitalize and query the data.
Collapse
Affiliation(s)
| | - Patrice Buche
- UMR IATE, University of Montpellier - INRA, 2 place Pierre Viala F-34060 Montpellier Cedex, France
- LIRMM, Université de Montpellier, CNRS, INRIA GraphIK, Montpellier, F-34060, France
| | - Luc Menut
- UMR IATE, University of Montpellier - INRA, 2 place Pierre Viala F-34060 Montpellier Cedex, France
| | - Julien Cufi
- UMR IATE, University of Montpellier - INRA, 2 place Pierre Viala F-34060 Montpellier Cedex, France
| | - Valérie Guillard
- UMR IATE, University of Montpellier - INRA, 2 place Pierre Viala F-34060 Montpellier Cedex, France
| |
Collapse
|
4
|
Münch M, Guillard V, Gaucel S, Destercke S, Thévenot J, Buche P. Composition-based statistical model for predicting CO2 solubility in modified atmosphere packaging application. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Jakobsen AN, Gabrielsen L, Johnsen EM, Rotabakk BT, Lerfall J. Application of soluble gas stabilization technology on ready-to-eat pre-rigor filleted Atlantic salmon (Salmo salar L.). J Food Sci 2022; 87:2377-2390. [PMID: 35546451 PMCID: PMC9322570 DOI: 10.1111/1750-3841.16164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Abstract
Abstract The demand for high‐quality, convenient, and sustainable salmon products represents a potential for value‐added product development and novel packaging solutions. Soluble gas stabilization (SGS) technology, which applies dissolved CO2 in the product before packaging, represents a novel approach to retain product quality and prevent microbiological deterioration during cold storage of pre‐rigor filleted salmon loins. The present study aimed to examine the solubility of CO2 in salmon loins as affected by rigor status. In addition, the effect of predissolved CO2 on the overall quality of pre‐rigor vacuum‐packed Atlantic salmon (Salmo salar L.) was investigated during storage at 4°C. The CO2 pretreatment was conducted, exposing loins to 100% CO2 for 18 h at 4°C (the control group was kept in air at 4°C) before repackaging and storage for 15 days. Dissolved CO2 in the muscle (equilibrium achieved four days post packaging) was slightly higher in pre‐rigor than post‐rigor salmon loins (pequilibrium = 0.006). Moreover, the overall spoilage (Hvalue) and microbiological stability of salmon fillets stored in SGS‐vacuum were significantly improved compared to vacuum‐packed loins (p < 0.05). The results demonstrate that SGS technology can maintain the overall quality of pre‐rigor vacuum‐packed salmon loins without introducing the high gas‐to‐product volume ratio recognized by modified atmosphere packaging. Thus, the application of SGS technology on pre‐rigor loins can lead to higher economic gain and environmental benefits due to the reduced amount of required packaging material and reduced food waste. Practical Application CO2 can be dissolved in pre‐rigor salmon loins before vacuum packaging to increase product shelf life during cold storage.
Collapse
Affiliation(s)
- Anita Nordeng Jakobsen
- Department of Biotechnology and Food Science, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Lisa Gabrielsen
- Department of Biotechnology and Food Science, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | - Elena Marie Johnsen
- Department of Biotechnology and Food Science, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Jørgen Lerfall
- Department of Biotechnology and Food Science, NTNU- Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
6
|
Abel N, Rotabakk BT, Lerfall J. Mild processing of seafood-A review. Compr Rev Food Sci Food Saf 2021; 21:340-370. [PMID: 34913247 DOI: 10.1111/1541-4337.12876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022]
Abstract
Recent years have shown a tremendous increase in consumer demands for healthy, natural, high-quality convenience foods, especially within the fish and seafood sector. Traditional processing technologies such as drying or extensive heating can cause deterioration of nutrients and sensory quality uncompilable with these demands. This has led to development of many novel processing technologies, which include several mild technologies. The present review highlights the potential of mild thermal, and nonthermal physical, and chemical technologies, either used alone or in combination, to obtain safe seafood products with good shelf life and preference among consumers. Moreover, applications and limitations are discussed to provide a clear view of the potential for future development and applications. Some of the reviewed technologies, or combinations thereof, have shown great potential for non-seafood products, yet data are missing for fish and seafood in general. The present paper visualizes these knowledge gaps and the potential for new technology developments in the seafood sector. Among identified gaps, the combination of mild heating (e.g., sous vide or microwave) with more novel technologies such as pulsed electric field, pulsed light, soluble gas stabilization, cold plasma, or Ohmic heat must be highlighted. However, before industrial applications are available, more research is needed.
Collapse
Affiliation(s)
- Nanna Abel
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Jørgen Lerfall
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
7
|
Esmaeilian S, Rotabakk BT, Lerfall J, Jakobsen AN, Abel N, Sivertsvik M, Olsen A. The use of soluble gas stabilization technology on food – A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Phan K, Truong T, Wang Y, Bhandari B. Effect of CO
2
nanobubbles incorporation on the viscosity reduction of fruit juice concentrate and vegetable oil. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Khanh Phan
- School of Agriculture and Food Sciences The University of Queensland Brisbane Queensland 4072 Australia
| | - Tuyen Truong
- School of Agriculture and Food Sciences The University of Queensland Brisbane Queensland 4072 Australia
- School of Science RMIT University Melbourne Victoria 3083 Australia
| | - Yong Wang
- School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
9
|
Oxidative Stability at Different Storage Conditions and Adulteration Detection of Prickly Pear Seeds Oil. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8837090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lipid oxidation and adulteration have a negative impact on functionality and notoriety of foods especially vegetable oils and cause economic losses. The present study investigates the control of two commercial quality aspects of prickly pear seeds oil (PPSO): oxidative stability during storage and detection of adulteration. Peroxide index, specific extinction coefficients K232 and K270, free acidity, and fatty acids composition were evaluated during different periods of incubation (6, 12, and 18 months) at various temperatures (4°C, 25°C, 40°C, and uncontrolled room temperature ranging between 4°C and 40°C) with different packaging (protected and unprotected from sunlight, with and without nitrogen gas bubbling). Based on the physicochemical and biochemical parameters evolution, this study has shown that PPSO stored at 4°C for 18 months preserves the initial quality. However, at 40°C, an intense lipid oxidative process occurred after 6 months of storage. The changes have also affected fatty acids composition, especially rates of linoleic and oleic acids. The shelf-life of oils stored at 25°C and at uncontrolled room temperature can be limited to 6 months. Regarding the impact of light and nitrogen bubbling, sunlight has affected seriously the oxidative stability of oils after 12 months of storage and the bubbling with nitrogen has improved their stability when they have been stored in clear glass bottles. The levels of adulteration detection using fatty acids as markers are relatively high. The detection of oil adulteration can be depicted by fatty acids composition up to 15% of olive and almond oils and up to 20% of rapeseed oil. The iodine value could also be an indicator of the sunflower oil presence in PPSO. Therefore, other minor compounds including sterols and tocopherols should be investigated to depict PPSO adulteration with cheaper oils and to determine lower levels of detection in order to ensure the authenticity of PPSO.
Collapse
|
10
|
Abel N, Rotabakk BT, Lerfall J. Effect of salt on CO2 solubility in salmon (Salmo salar L) stored in modified atmosphere. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.109946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Abel N, Rotabakk BT, Rustad T, Ahlsen VB, Lerfall J. Physiochemical and Microbiological Quality of Lightly Processed Salmon (
Salmo salar L
.) Stored Under Modified Atmosphere. J Food Sci 2019; 84:3364-3372. [DOI: 10.1111/1750-3841.14852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 08/26/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Nanna Abel
- Dept. of Biotechnology and Food ScienceNorwegian Univ. of Science and Technology Sverresgate 12 7012 Trondheim Norway
| | | | - Turid Rustad
- Dept. of Biotechnology and Food ScienceNorwegian Univ. of Science and Technology Sverresgate 12 7012 Trondheim Norway
| | - Vidar B. Ahlsen
- Dept. of Biotechnology and Food ScienceNorwegian Univ. of Science and Technology Sverresgate 12 7012 Trondheim Norway
| | - Jørgen Lerfall
- Dept. of Biotechnology and Food ScienceNorwegian Univ. of Science and Technology Sverresgate 12 7012 Trondheim Norway
| |
Collapse
|
12
|
Idumah CI, Hassan A, Ihuoma DE. Recently emerging trends in polymer nanocomposites packaging materials. POLYM-PLAST TECH MAT 2018. [DOI: 10.1080/03602559.2018.1542718] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Christopher Igwe Idumah
- Enhanced Polymer Engineering Group, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Azman Hassan
- Enhanced Polymer Engineering Group, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - David Esther Ihuoma
- Enhanced Polymer Engineering Group, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- Department of TVE, Food and Nutrition Unit, Ebonyi State University, Abakaliki, Nigeria
| |
Collapse
|