1
|
Eladl SN, Elnabawy AM, Eltanahy EG. Recent biotechnological applications of value-added bioactive compounds from microalgae and seaweeds. BOTANICAL STUDIES 2024; 65:28. [PMID: 39312045 PMCID: PMC11420431 DOI: 10.1186/s40529-024-00434-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/24/2024] [Indexed: 09/26/2024]
Abstract
Microalgae and seaweed have been consumed as food for several decades to combat starvation and food shortages worldwide. The most famous edible microalgae species are Nostoc, Spirulina, and Aphanizomenon, in addition to seaweeds, which are used in traditional medicine and food, such as Nori, which is one of the most popular foods containing Pyropia alga as a major ingredient. Recently, many applications use algae-derived polysaccharides such as agar, alginate, carrageenan, cellulose, fucoidan, mannan, laminarin, ulvan, and xylan as gelling agents in food, pharmaceuticals, and cosmetics industries. Moreover, pigments (carotenoids particularly astaxanthins, chlorophylls, and phycobilins), minerals, vitamins, polyunsaturated fatty acids, peptides, proteins, polyphenols, and diterpenes compounds are accumulated under specific cultivation and stress conditions in the algal cells to be harvested and their biomass used as a feedstock for the relevant industries and applications. No less critical is the use of algae in bioremediation, thus contributing significantly to environmental sustainability.This review will explore and discuss the various applications of microalgae and seaweeds, emphasising their role in bioremediation, recent products with algal added-value compounds that are now on the market, and novel under-developing applications such as bioplastics and nanoparticle production. Nonetheless, special attention is also drawn towards the limitations of these applications and the technologies applied, and how they may be overcome.
Collapse
Affiliation(s)
- Salma N Eladl
- Algae Biotechnology and Water Quality Lab, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Aya M Elnabawy
- Algae Biotechnology and Water Quality Lab, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Eladl G Eltanahy
- Algae Biotechnology and Water Quality Lab, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
2
|
Huang Z, Ding M, Xie Y, Chen B, Zhao D, Li C. Kappa-carrageenan in a pork-based high-fat diet inhibited lipid bioavailability through interactions with pork protein. Int J Biol Macromol 2024; 276:133922. [PMID: 39029841 DOI: 10.1016/j.ijbiomac.2024.133922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
κ-Carrageenan is a soluble dietary fiber widely used in meat products. Although its regulatory effect on glycolipid metabolism has been reported, the underlying mechanism remains unclear. The present study established a pork diet model for in vitro digestion to study how κ-carrageenan affected its digestive behavior and lipid bioavailability. The results revealed that κ-carrageenan addition to a pork-based high-fat diet reduced the rate of lipolysis and increased the number and size of lipid droplets in an in vitro digestion condition. However, κ-carrageenan did not inhibit lipolysis when lipids and κ-carrageenan were mixed directly or with the addition of pork protein. Furthermore, the pork protein in the diet significantly enhanced the inhibitory effect of κ-carrageenan on lipolysis with decreased proteolysis and raised hydrophobicity of protein hydrolysate. Our findings suggest that κ-carrageenan can inhibit dietary lipid bioavailability by interacting with pork protein in meat products or meat-based diets during digestion and indicate the positive role of carrageenan in the food industry to alleviate the excessive accumulation of lipids in the body.
Collapse
Affiliation(s)
- Zhiji Huang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University; Nanjing 210095, PR China; Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, PR China
| | - Mengzhen Ding
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University; Nanjing 210095, PR China
| | - Yunting Xie
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University; Nanjing 210095, PR China
| | - Bingyan Chen
- Institute of Food Science and Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian 350002, PR China
| | - Di Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University; Nanjing 210095, PR China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA, Jiangsu Synergetic Innovation Center of Meat Production, Processing and Quality Control, Nanjing Agricultural University; Nanjing 210095, PR China.
| |
Collapse
|
3
|
Nezamdoost-Sani N, Khaledabad MA, Amiri S, Phimolsiripol Y, Mousavi Khaneghah A. A comprehensive review on the utilization of biopolymer hydrogels to encapsulate and protect probiotics in foods. Int J Biol Macromol 2024; 254:127907. [PMID: 37935287 DOI: 10.1016/j.ijbiomac.2023.127907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/25/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Probiotics must survive in foods and passage through the human mouth, stomach, and small intestine to reach the colon in a viable state and exhibit their beneficial health effects. Probiotic viability can be improved by encapsulating them inside hydrogel-based delivery systems. These systems typically comprise a 3D network of cross-linked polymers that retain large amounts of water within their pores. This study discussed the stability of probiotics and morphology of hydrogel beads after encapsulation, encapsulation efficiency, utilization of natural polymers, and encapsulation mechanisms. Examples of the application of these hydrogel-based delivery systems are then given. These studies show that encapsulation of probiotics in hydrogels can improve their viability, provide favorable conditions in the food matrix, and control their release for efficient colonization in the large intestine. Finally, we highlight areas where future research is required, such as the large-scale production of encapsulated probiotics and the in vivo testing of their efficacy using animal and human studies.
Collapse
Affiliation(s)
- Narmin Nezamdoost-Sani
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Saber Amiri
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | | | - Amin Mousavi Khaneghah
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Department of Fruit and Vegetable Product Technology, Warsaw, Poland.
| |
Collapse
|
4
|
Zhu C, Mou M, Yang L, Jiang Z, Zheng M, Li Z, Hong T, Ni H, Li Q, Yang Y, Zhu Y. Enzymatic hydrolysates of κ-carrageenan by κ-carrageenase-CLEA immobilized on amine-modified ZIF-8 confer hypolipidemic activity in HepG2 cells. Int J Biol Macromol 2023; 252:126401. [PMID: 37597638 DOI: 10.1016/j.ijbiomac.2023.126401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
κ-Carrageenase can degrade κ-carrageenan to produce bioactive κ-carrageenan oligosaccharides (KCOs) that have potential applications in pharmaceutical, food, agricultural, and cosmetics industries. Immobilized enzymes gain their popularity due to their good reusability, enhanced stability, and tunability. In this study, the previously characterized catalytic domain of Pseudoalteromonas purpurea κ-carrageenase was covalently immobilized on the synthesized amine-modified zeolitic imidazolate framework-8 nanoparticles with the formation of cross-linked enzyme aggregates, and the immobilized κ-carrageenase was further characterized. The immobilized κ-carrageenase demonstrated excellent pH stability and good reusability, and exhibited higher optimal reaction temperature, better thermostability, and extended storage stability compared with the free enzyme. The KCOs produced by the immobilized κ-carrageenase could significantly decrease the TC, TG, and LDL-C levels in HepG2 cells, increase the HDL-C level in HepG2 cells, and reduce the free fatty acids level in Caco-2 cells. Biochemical assays showed that the KCOs could activate AMPK activity, increase the ratios of p-AMPK/AMPK and p-ACC/ACC, and downregulate the expression of the lipid metabolism related proteins including SREBP1 and HMGCR in the hyperlipidemic HepG2 cells. This study provides a novel and effective method for immobilization of κ-carrageenase, and the KCOs produced by the immobilized enzyme could be a potential therapeutic agent to prevent hyperlipidemia.
Collapse
Affiliation(s)
- Chunhua Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Mingjing Mou
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Leilei Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Xiamen Ocean Vocational College, Xiamen 361102, China
| | - Qingbiao Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Yuanfan Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| |
Collapse
|
5
|
Cortés-Camargo S, Román-Guerrero A, Alvarez-Ramirez J, Alpizar-Reyes E, Velázquez-Gutiérrez SK, Pérez-Alonso C. Microstructural influence on physical properties and release profiles of sesame oil encapsulated into sodium alginate-tamarind mucilage hydrogel beads. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
6
|
Jin H, Wang L, Yang S, Wen J, Zhang Y, Jiang L, Sui X. Producing mixed-soy protein adsorption layers on alginate microgels to controlled-release β-carotene. Food Res Int 2023; 164:112319. [PMID: 36737912 DOI: 10.1016/j.foodres.2022.112319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
In this study, the effects of soy protein isolate (SPI) on the morphology, encapsulation efficiency, storage stability, swelling behavior, and in vitro digestion behavior of calcium alginate (CA) microgels were investigated. CA and calcium alginate-SPI (CAS) microgels with encapsulated β-carotene were prepared by extruding a mixture of alginate and SPI using a co-extrusion technique, followed by cross-linking with Ca2+. All microgels exhibited homogeneous sizes and spherical shapes, and CAS microgels showed high levels of protein loading efficiency. The encapsulation efficiency and storage stability of β-carotene within CAS microgels were higher than those within CA microgels. The introduction of SPI into CAS microgels resulted in a higher degree of gel size shrinkage in gastric fluid and a lower degree of swelling in intestinal fluid compared to CA microgels. In vitro digestion was conducted to investigate the effects of the addition of SPI on the release behavior of CA and CAS microgels. Results obtained showed that CAS microgels were more resistant to simulated gastric fluid than CA microgels. Cryo-scanning electron microscopy (cryo-SEM) and confocal laser scanning microscopy (CLSM) observations indicated that the release behavior was dependent on the porosity of the CA and CAS microgels, and the porosity was influenced by the concentration of SPI. This study showed that the introduction of SPI to CA microgels can lead to the development of an effective controlled release delivery system.
Collapse
Affiliation(s)
- Hainan Jin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lei Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Shuyuan Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiayu Wen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
7
|
Zaitseva OO, Sergushkina MI, Khudyakov AN, Polezhaeva TV, Solomina ON. Seaweed sulfated polysaccharides and their medicinal properties. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Wu B, Li Y, Li Y, Li H, Li L, Xia Q. Encapsulation of resveratrol-loaded Pickering emulsions in alginate/pectin hydrogel beads: Improved stability and modification of digestive behavior in the gastrointestinal tract. Int J Biol Macromol 2022; 222:337-347. [PMID: 36152701 DOI: 10.1016/j.ijbiomac.2022.09.175] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022]
Abstract
In this study, alginate/pectin hydrogel beads were prepared with different mixing ratios (9:1, 8:2, 7:3, 6:4, and 5:5) to encapsulate resveratrol-loaded Pickering emulsions using Ca2+ crosslinking. The system with a suitable ratio of pectin and alginate can enhance the encapsulation efficiency and loading capacity. Scanning electron microscopy (SEM) study confirmed that the hydrogel beads were spherical, in which Pickering emulsion was distributed evenly within the polymer network. Fourier Transform Infrared Spectroscopy (FTIR) study indicated that the hydrogel beads were formed by physical cross-linking. X-ray diffraction (XRD) study demonstrated that resveratrol existed in hydrogel beads with an amorphous or dissolved form. Besides, the stability and antioxidant capacity suggested that hydrogel beads could offer protection to resveratrol by preventing degradation through environmental stresses, while maintaining its antioxidant capacity. Importantly, hydrogels significantly reduced the release of free fatty acids and resveratrol during in vitro digestion compared to emulsions, especially with the appropriate ratio of sodium alginate and pectin. Overall, Pickering emulsions-loaded alginate/pectin hydrogel beads could offer a novel option for the preparation of low-calorie foods and a potential substitute model for controlling the release of free fatty acids contributing to the transportation of resveratrol.
Collapse
Affiliation(s)
- Bi Wu
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Yang Li
- School of Forestry, Northeast Forestry University, Harbin 150000, China
| | - Yuanyuan Li
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; School of Pharmacy Administration, Southeast University Chengxian Colleague, Nanjing 210096, China
| | - Heng Li
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Lele Li
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China; National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, China.
| |
Collapse
|
9
|
Wang W, Dong Z, Gu L, Wu B, Ji S, Xia Q. Impact of internal aqueous phase gelation on in vitro lipid digestion of epigallocatechin gallate-loaded W 1 /O/W 2 double emulsions incorporated in alginate hydrogel beads. J Food Sci 2022; 87:4596-4608. [PMID: 36102167 DOI: 10.1111/1750-3841.16317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
Our objective was to investigate if the internal aqueous phase gelation of Water-in-oil-in-water double emulsions encapsulated in alginate beads would affect their structural stability and lipid hydrolysis during in vitro digestion. Therefore, bioactive molecules such as (-)-epigallocatechin gallate were encapsulated into different types of delivery systems: original double emulsions (as control) and incorporated double emulsions (filled in alginate hydrogel beads), both with non-gelled or gelled internal aqueous phase by locust bean gum and κ-carrageenan. After 2 h of gastric digestion, the gelled original emulsions showed smaller mean droplet diameters and less coalescence during the in vitro simulated gastrointestinal digestion compared to the non-gelled original emulsions. For the incorporated emulsions, oil droplets released from beads aggregated under intestinal conditions, and the rate of lipolysis was delayed. Interestingly, the internal aqueous phase gelation also impacted the rate and cumulative amount of free fatty acids (FFA) released. PRACTICAL APPLICATION: The combination of incorporating (-)-epigallocatechin gallate-loaded double emulsions into the alginate hydrogel matrix and gelling the internal aqueous phase was a benefit to regulating the rate and extent of lipid digestion for specific applications in foods, such as to control blood lipid levels and appetite.
Collapse
Affiliation(s)
- Wenjuan Wang
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China.,National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China.,Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Zhe Dong
- Department of Chemical and Pharmaceutical Engineering, Southeast University ChengXian College, Nanjing, China
| | - Liyuan Gu
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China.,National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China.,Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Bi Wu
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China.,National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China.,Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Suping Ji
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China.,National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China.,Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Qiang Xia
- School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China.,National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, China.,Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| |
Collapse
|
10
|
Fabrication of aerogel-templated oleogels from alginate-gelatin conjugates for in vitro digestion. Carbohydr Polym 2022; 291:119603. [DOI: 10.1016/j.carbpol.2022.119603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/16/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
|
11
|
Negreanu-Pirjol BS, Negreanu-Pirjol T, Popoviciu DR, Anton RE, Prelipcean AM. Marine Bioactive Compounds Derived from Macroalgae as New Potential Players in Drug Delivery Systems: A Review. Pharmaceutics 2022; 14:pharmaceutics14091781. [PMID: 36145528 PMCID: PMC9505595 DOI: 10.3390/pharmaceutics14091781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The marine algal ecosystem is characterized by a rich ecological biodiversity and can be considered as an unexploited resource for the discovery and isolation of novel bioactive compounds. In recent years, marine macroalgae have begun to be explored for their valuable composition in bioactive compounds and opportunity to obtain different nutraceuticals. In comparison with their terrestrial counterparts, Black Sea macroalgae are potentially good sources of bioactive compounds with specific and unique biological activities, insufficiently used. Macroalgae present in different marine environments contain several biologically active metabolites, including polysaccharides, oligosaccharides, polyunsaturated fatty acids, sterols, proteins polyphenols, carotenoids, vitamins, and minerals. As a result, they have received huge interest given their promising potentialities in supporting antitumoral, antimicrobial, anti-inflammatory, immunomodulatory, antiangiogenic, antidiabetic, and neuroprotective properties. An additional advantage of ulvans, fucoidans and carrageenans is the biocompatibility and limited or no toxicity. This therapeutic potential is a great natural treasure to be exploited for the development of novel drug delivery systems in both preventive and therapeutic approaches. This overview aims to provide an insight into current knowledge focused on specific bioactive compounds, which represent each class of macroalgae e.g., ulvans, fucoidans and carrageenans, respectively, as valuable potential players in the development of innovative drug delivery systems.
Collapse
Affiliation(s)
- Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, 6, Capitan Aviator Al. Serbanescu Street, Campus, Corp C, 900470 Constanta, Romania
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, 6, Capitan Aviator Al. Serbanescu Street, Campus, Corp C, 900470 Constanta, Romania
- Biological Sciences Section, Romanian Academy of Scientists, 3, Ilfov Street, 050044 Bucharest, Romania
- Correspondence:
| | - Dan Razvan Popoviciu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, 1, University Alley, Campus, Corp B, 900527 Constanta, Romania
| | - Ruxandra-Elena Anton
- Cellular and Molecular Biology Department, National Institute of R&D for Biological Sciences, 296, Splaiul Independentei Bvd., 060031 Bucharest, Romania
| | - Ana-Maria Prelipcean
- Cellular and Molecular Biology Department, National Institute of R&D for Biological Sciences, 296, Splaiul Independentei Bvd., 060031 Bucharest, Romania
| |
Collapse
|
12
|
Jafari A, Farahani M, Sedighi M, Rabiee N, Savoji H. Carrageenans for tissue engineering and regenerative medicine applications: A review. Carbohydr Polym 2022; 281:119045. [DOI: 10.1016/j.carbpol.2021.119045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022]
|
13
|
Zhang C, Xu Y, Wu S, Zheng W, Song S, Ai C. Fabrication of astaxanthin-enriched colon-targeted alginate microspheres and its beneficial effect on dextran sulfate sodium-induced ulcerative colitis in mice. Int J Biol Macromol 2022; 205:396-409. [PMID: 35176325 DOI: 10.1016/j.ijbiomac.2022.02.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/22/2022] [Accepted: 02/11/2022] [Indexed: 01/13/2023]
Abstract
Astaxanthin (Ax) with a strong antioxidant activity is beneficial to human health, but its application is limited by its highly unsaturated structure and poor water-solubility. Ax-enriched colon targeted alginate particles (Ax-Alg) was prepared by high-pressure spraying and ionic gelation, and most of particles was in the range of 0.5-3.2 μm in a diameter. The in vitro models showed that Ax-Alg can maintain the structural integrity in the different conditions (pH, heat and ion). In addition, Ax-Alg can well tolerate the conditions in the mouth, stomach and small intestine and reach the colon where Ax was released due to fermentation of gut microbiota. Mice experiment showed that Ax-Alg reduced dextran sulfate sodium-induced colitis, involving weight loss, disease activity index, colonic mucosal integrity and inflammation, and oxidative damage. On the other hand, Ax-Alg regulated the gut microbiota composition and reduced the abundances of Bacteroidetes members that had positive correlation with ulcerative colitis. Ax-Alg had better effect on the treatment of ulcerative colitis than oil-in-water emulsion, which can be attributed to the synergistic effect of Ax and alginate. This study can be helpful for the application of colon-targeted delivery system in the foods and treatment of colon diseases.
Collapse
Affiliation(s)
- Chenxi Zhang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yuxin Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Wu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Weiyun Zheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China
| | - Chunqing Ai
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, PR China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
14
|
Guo Z, Wei Y, Zhang Y, Xu Y, Zheng L, Zhu B, Yao Z. Carrageenan oligosaccharides: A comprehensive review of preparation, isolation, purification, structure, biological activities and applications. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Tan Y, McClements DJ. Plant-Based Colloidal Delivery Systems for Bioactives. Molecules 2021; 26:molecules26226895. [PMID: 34833987 PMCID: PMC8625429 DOI: 10.3390/molecules26226895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/25/2022] Open
Abstract
The supplementation of plant-based foods and beverages with bioactive agents may be an important strategy for increasing human healthiness. Numerous kinds of colloidal delivery systems have been developed to encapsulate bioactives with the goal of improving their water dispersibility, chemical stability, and bioavailability. In this review, we focus on colloidal delivery systems assembled entirely from plant-based ingredients, such as lipids, proteins, polysaccharides, phospholipids, and surfactants isolated from botanical sources. In particular, the utilization of these ingredients to create plant-based nanoemulsions, nanoliposomes, nanoparticles, and microgels is covered. The utilization of these delivery systems to encapsulate, protect, and release various kinds of bioactives is highlighted, including oil-soluble vitamins (like vitamin D), ω-3 oils, carotenoids (vitamin A precursors), curcuminoids, and polyphenols. The functionality of these delivery systems can be tailored to specific applications by careful selection of ingredients and processing operations, as this enables the composition, size, shape, internal structure, surface chemistry, and electrical characteristics of the colloidal particles to be controlled. The plant-based delivery systems discussed in this article may be useful for introducing active ingredients into the next generation of plant-based foods, meat, seafood, milk, and egg analogs. Nevertheless, there is still a need to systematically compare the functional performance of different delivery systems for specific applications to establish the most appropriate one. In addition, there is a need to test their efficacy at delivering bioavailable forms of bioactives using in vivo studies.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA;
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
- Correspondence:
| |
Collapse
|
16
|
Wang C, Ren J, Song H, Chen X, Qi H. Characterization of whey protein-based nanocomplex to load fucoxanthin and the mechanism of action on glial cells PC12. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Zhang X, Hu B, Zhao Y, Yang Y, Gao Z, Nishinari K, Yang J, Zhang Y, Fang Y. Electrostatic Interaction-Based Fabrication of Calcium Alginate-Zein Core-Shell Microcapsules of Regulable Shapes and Sizes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10424-10432. [PMID: 34427433 DOI: 10.1021/acs.langmuir.1c01098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Core-shell microcapsules with combined features of hydrophilicity and hydrophobicity have become much popular. However, the assembly of biocompatible and edible materials in hydrophilic-hydrophobic core-shell microcapsules is not easy. In this work, based on electrostatic interactions, we prepared controllable calcium alginate (ALG)-zein core-shell particles of different shapes and sizes using hydrophilic ALG and hydrophobic zein by a two-step extrusion method. Negatively charged hydrogel beads of spherical, ellipsoidal, or fibrous shape were added into a positively charged zein solution (dissolved in 70% (v/v) aqueous ethanol solution) to achieve different-shaped core-shell particles. Interestingly, the size, shape, and shell thickness of the particles can be regulated by the needle diameter, stirring speed, and zein concentration. Moreover, for simplification, the core-shell particles were also synthesized by a one-step extrusion method, in which an ALG solution was added dropwise into a 70% (v/v) aqueous ethanol solution containing zein and CaCl2. The particles synthesized in this work showed controlled digestion of encapsulated medium-chain triglyceride (MCT) and sustained release of encapsulated thiamine and ethyl maltol. Our preparation method is simplistic and can be extended to fabricate a variety of hydrophilic and hydrophobic core-shell structures to encapsulate a broad spectrum of materials.
Collapse
Affiliation(s)
- Xun Zhang
- Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Hubei University of Technology, Wuhan 430068, China
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Bing Hu
- Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Hubei University of Technology, Wuhan 430068, China
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yiguo Zhao
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yisu Yang
- Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Hubei University of Technology, Wuhan 430068, China
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Zhiming Gao
- Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Hubei University of Technology, Wuhan 430068, China
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Katsuyoshi Nishinari
- Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Hubei University of Technology, Wuhan 430068, China
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jixin Yang
- Faculty of Arts, Science and Technology, Wrexham Glyndwr University, Plas Coch, Mold Road, Wrexham LL11 2AW, United Kingdom
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Dong Y, Wei Z, Xue C. Recent advances in carrageenan-based delivery systems for bioactive ingredients: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Tan Y, McClements DJ. Improving the bioavailability of oil-soluble vitamins by optimizing food matrix effects: A review. Food Chem 2021; 348:129148. [PMID: 33515946 DOI: 10.1016/j.foodchem.2021.129148] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/21/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
The potency of oil-soluble vitamins (vitamins A, D, E and K) in fortified foods can be improved by understanding how food matrices impact their bioavailability. In this review, the major food matrix effects influencing the bioavailability of oil-soluble vitamins are highlighted: oil content, oil composition, particle size, interfacial properties, and food additives. Droplet size and aggregation state in the human gut impact vitamin bioavailability by modulating lipid digestion, vitamin release, and vitamin solubilization. Vitamins in small isolated oil droplets typically have a higher bioavailability than those in large or aggregated ones. Emulsifiers, stabilizers, or texture modifiers can therefore affect bioavailability by influencing droplet size or aggregation. The dimensions of the hydrophobic domains in mixed micelles depends on lipid type: if the domains are too small, vitamin bioavailability is low. Overall, this review highlights the importance of carefully designing food matrices to improve vitamin bioavailability.
Collapse
Affiliation(s)
- Yunbing Tan
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
20
|
McClements DJ. Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Prog Lipid Res 2020; 81:101081. [PMID: 33373615 DOI: 10.1016/j.plipres.2020.101081] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
The design, fabrication, and application of edible nanoemulsions for the encapsulation and delivery of bioactive agents has been a highly active research field over the past decade or so. In particular, they have been widely used for the encapsulation and delivery of hydrophobic bioactive substances, such as hydrophobic drugs, lipids, vitamins, and phytochemicals. A great deal of progress has been made in creating stable edible nanoemulsions that can increase the stability and efficacy of these bioactive agents. This article highlights some of the most important recent advances within this area, including increasing the water-dispersibility of bioactives, protecting bioactives from chemical degradation during storage, increasing the bioavailability of bioactives after ingestion, and targeting the release of bioactives within the gastrointestinal tract. Moreover, it highlights progress that is being made in creating plant-based edible nanoemulsions. Finally, the potential toxicity of edible nanoemulsions is considered.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
21
|
Effect of in vitro digestion-fermentation of Ca(II)-alginate beads containing sugar and biopolymers over global antioxidant response and short chain fatty acids production. Food Chem 2020; 333:127483. [DOI: 10.1016/j.foodchem.2020.127483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022]
|
22
|
Aguirre-Calvo TR, Molino S, Perullini M, Rufián-Henares J, Santagapita PR. Effects of in vitro digestion-fermentation over global antioxidant response and short chain fatty acid production of beet waste extracts in Ca(ii)-alginate beads. Food Funct 2020; 11:10645-10654. [PMID: 33216078 DOI: 10.1039/d0fo02347g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of the present work was to analyze the effect of in vitro gastrointestinal digestion-fermentation on antioxidant capacity, total phenols and production of short chain fatty acids (SCFAs) from biocompounds derived from beet waste (leaf and stem) encapsulated in different formulations of Ca(ii)-alginate beads. The encapsulated systems presented higher antioxidant capacity in different phases (digested and fermented) than the extracts without encapsulation, making Ca(ii)-alginate beads a suitable delivery vehicle. Levels of total phenolic compounds and antioxidant capacity of the fermented fraction were up to ten times higher than those of the digested fraction, boosted by the contribution of bioactive compounds from the by-product of beet as well as by sugars and biopolymers. Among the formulations used, those that had excipients (sugars and/or biopolymers) presented a better overall antioxidant response than the beads with just alginate. Guar gum and sucrose lead to a promising enhancement of Ca(ii)-alginate beads not only for preservation and protection but also in terms of stability under in vitro digestion-fermentation and production of SCFAs.
Collapse
Affiliation(s)
- Tatiana Rocio Aguirre-Calvo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica y Departamento de Industrias, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
23
|
Pacheco-Quito EM, Ruiz-Caro R, Veiga MD. Carrageenan: Drug Delivery Systems and Other Biomedical Applications. Mar Drugs 2020; 18:E583. [PMID: 33238488 PMCID: PMC7700686 DOI: 10.3390/md18110583] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Marine resources are today a renewable source of various compounds, such as polysaccharides, that are used in the pharmaceutical, medical, cosmetic, and food fields. In recent years, considerable attention has been focused on carrageenan-based biomaterials due to their multifunctional qualities, including biodegradability, biocompatibility, and non-toxicity, in addition to bioactive attributes, such as their antiviral, antibacterial, antihyperlipidemic, anticoagulant, antioxidant, antitumor, and immunomodulating properties. They have been applied in pharmaceutical formulations as both their bioactive and physicochemical properties make them suitable biomaterials for drug delivery, and recently for the development of tissue engineering. This article provides a review of recent research on the various types of carrageenan-based biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
| | - Roberto Ruiz-Caro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (E.-M.P.-Q.); (M.-D.V.)
| | | |
Collapse
|
24
|
Diefenthaeler HS, Bianchin MD, Marques MS, Nonnenmacher JL, Bender ET, Bender JG, Nery SF, Cichota LC, Külkamp-Guerreiro IC. Omeprazole nanoparticles suspension: Development of a stable liquid formulation with a view to pediatric administration. Int J Pharm 2020; 589:119818. [PMID: 32866648 DOI: 10.1016/j.ijpharm.2020.119818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/02/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022]
Abstract
Omeprazole (OME) is often used to treat disorders associated with gastric hypersecretion in children but a liquid pediatric formulation of this medicine is not currently available. The aim of this study is to develop OME loaded nanoparticles with a view to the obtention of a liquid pharmaceutical dosage form. Eudragit® RS100 was selected as the skeleton material in the inner core and pH-sensitive Eudragit® L100-55 was used as the outer coating of the nanoparticles prepared by the nanoprecipitation method. Pharmacological activity was evaluated by induction of ethanol ulcers in mice. The OME nanoparticles exhibited mean diameters of 174 nm (±17), polydispersity index of 0.229 (±0.01), zeta potential values of -13 mV (±2.60) and encapsulation efficiency of 68.1%. The in vivo pharmacological assessment showed the ability of nanoparticles to protect mice stomach against ulcer formation. The prepared suspension of OME nanoparticles represents effective therapeutic strategy in a liquid pharmaceutical form with the possibility of pediatric administration.
Collapse
Affiliation(s)
- Helissara Silveira Diefenthaeler
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Mariana Domingues Bianchin
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, 90050-170 Porto Alegre, RS, Brazil
| | - Morgana Souza Marques
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Julia Livia Nonnenmacher
- Faculdade de Farmácia, Universidade Regional Integrada do Alto Uruguai e das Missões, 99709-910 Erechim, RS, Brazil
| | - Emanueli Tainara Bender
- Faculdade de Farmácia, Universidade Regional Integrada do Alto Uruguai e das Missões, 99709-910 Erechim, RS, Brazil
| | - Júlia Gabrieli Bender
- Faculdade de Farmácia, Universidade Regional Integrada do Alto Uruguai e das Missões, 99709-910 Erechim, RS, Brazil
| | - Samara Feil Nery
- Faculdade de Farmácia, Universidade Regional Integrada do Alto Uruguai e das Missões, 99709-910 Erechim, RS, Brazil
| | - Luiz Carlos Cichota
- Faculdade de Farmácia, Universidade Regional Integrada do Alto Uruguai e das Missões, 99709-910 Erechim, RS, Brazil
| | - Irene Clemes Külkamp-Guerreiro
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, 90050-170 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil.
| |
Collapse
|
25
|
Huang Z, Brennan CS, Mohan MS, Stipkovits L, Zheng H, Kulasiri D, Guan W, Zhao H, Liu J. Milk lipid
in vitro
digestibility in wheat, corn and rice starch hydrogels. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Zhiguang Huang
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
- Riddet Research Institute Palmerston North 4442 New Zealand
| | - Charles S. Brennan
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
- Riddet Research Institute Palmerston North 4442 New Zealand
- Tianjin Key Laboratory of Food and Biotechnology School of Biotechnology and Food Science Tianjin University of Commerce Tianjin 300134 China
| | - Maneesha S. Mohan
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
| | - Letitia Stipkovits
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
| | - Haotian Zheng
- Department of Food, Bioprocessing and Nutrition Sciences Southeast Dairy Foods Research Center Raleigh NC 27695 USA
| | - Don Kulasiri
- Department of Wine, Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University P.O. Box 85084 Lincoln 7647 Christchurch New Zealand
| | - Wenqiang Guan
- Tianjin Key Laboratory of Food and Biotechnology School of Biotechnology and Food Science Tianjin University of Commerce Tianjin 300134 China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology School of Biotechnology and Food Science Tianjin University of Commerce Tianjin 300134 China
| | - Jianfu Liu
- Tianjin Key Laboratory of Food and Biotechnology School of Biotechnology and Food Science Tianjin University of Commerce Tianjin 300134 China
| |
Collapse
|
26
|
Encapsulation of lycopene in emulsions and hydrogel beads using dual modified rice starch: Characterization, stability analysis and release behaviour during in-vitro digestion. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105730] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Huang Z, Brennan CS, Zheng H, Mohan MS, Stipkovits L, Liu W, Kulasiri D, Guan W, Zhao H, Liu J. The effects of fungal lipase-treated milk lipids on bread making. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Effect of particle size on in vitro intestinal digestion of emulsion-filled gels: Mathematical analysis based on the Gallagher–Corrigan model. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2019.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Pascacio-Villafán C, Guillén L, Aluja M. Agar and Carrageenan as Cost-Effective Gelling Agents in Yeast-Reduced Artificial Diets for Mass-Rearing Fruit Flies and Their Parasitoids. INSECTS 2020; 11:insects11020131. [PMID: 32085554 PMCID: PMC7073888 DOI: 10.3390/insects11020131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/01/2020] [Accepted: 02/09/2020] [Indexed: 11/16/2022]
Abstract
The development of cost-effective diets for mass-rearing fruit flies (Diptera: Tephritidae) and their parasitoids in pest control programs based on the Sterile Insect Technique is a high priority worldwide. To this end, we tested carrageenan, agar, gelatin and two types of pregelatinized corn starches as gelling agents at varying percentages in a yeast-reduced liquid larval diet for rearing the Mexfly, Anastrepha ludens. Only diets with 0.234% (w/w) agar or 0.424% carrageenan were identified as diets with potential for mass-rearing A. ludens in terms of the number of pupae recovered from the diet, pupal weight, adult emergence, flight ability and diet cost. Comparative experiments showed that yeast-reduced agar and carrageenan gel diets produced heavier pupae and higher proportions of flying adults than the standard mass-rearing diet. The gel-agar and mass-rearing diets produced more pupae than the gel-carrageenan diet, but the latter produced more suitable larvae as hosts for rearing of Diachasmimorpha longicaudata (Hymenoptera: Braconidae) females, a widely used fruit fly biocontrol agent. Yeast-reduced agar and carrageenan gel diets could represent cost-effective fruit fly mass-rearing diets if a practical system for gel diet preparation and dispensation at fruit fly mass-rearing facilities is developed.
Collapse
|
30
|
|
31
|
Dong L, Lv M, Gao X, Zhang L, Rogers M, Cao Y, Lan Y. In vitrogastrointestinal digestibility of phytosterol oleogels: influence of self-assembled microstructures on emulsification efficiency and lipase activity. Food Funct 2020; 11:9503-9513. [DOI: 10.1039/d0fo01642j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The objective of this study was to investigate the influence of a self-assembled microstructure on lipid digestibility of phytosterol (γ-oryzanol and β-sitosterol) oleogels, including the oil emulsification process and further lipolysis.
Collapse
Affiliation(s)
- Lulu Dong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- P.R. China
| | - Muwen Lv
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- P.R. China
| | - Xiangyang Gao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- P.R. China
| | - Luping Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- P.R. China
| | - Michael Rogers
- Department of Food Science
- University of Guelph
- Guelph
- Canada
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- P.R. China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Sciences
- South China Agricultural University
- Guangzhou
- P.R. China
| |
Collapse
|
32
|
Valado A, Pereira M, Caseiro A, Figueiredo JP, Loureiro H, Almeida C, Cotas J, Pereira L. Effect of Carrageenans on Vegetable Jelly in Humans with Hypercholesterolemia. Mar Drugs 2019; 18:E19. [PMID: 31878353 PMCID: PMC7024328 DOI: 10.3390/md18010019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 11/21/2022] Open
Abstract
Changes in lipid profile constitute the main risk factor for cardiovascular diseases. Algae extracted carrageenans are long-chain polysaccharides and their ability to form gels provides for the formation of vegetable jelly. The objective was to evaluate the bioactive potential of carrageenan (E407) in the lipid profile, after ingestion of jelly. A total of 30 volunteers of both sexes, aged 20-64 years and with total cholesterol (TC) values ≥200 mg/dL, who ingested 100 mL/day of jelly for 60 days, were studied. All had two venous blood collections: before starting the jelly intake and after 60 days. At both times, TC, high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) and triglycerides (TG), were evaluated using commercial kits and spectrophotometer. The statistics were performed using the SPSS 25.0 software and p < 0.05 were considered statistically significant. Serum values after 60 days of jelly intake revealed a statistically significant decrease in TC levels (5.3%; p = 0.001) and LDL-C concentration (5.4%; p = 0.048) in females. The daily intake of vegetable jelly for 60 days showed a reduction in serum TC and LDL-C levels in women, allowing us to conclude that carrageenan has bioactive potential in reducing TC concentration.
Collapse
Affiliation(s)
- Ana Valado
- Polytechnic Institute of Coimbra, ESTeSC-Coimbra Health School, Department of Biomedical Laboratory Sciences, Rua 5 de Outubro, S. Martinho do Bispo, Apart. 7006, 3046-854 Coimbra, Portugal; (M.P.); (A.C.)
- Marine and Environmental Sciences Centre (MARE), Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (L.P.)
| | - Maria Pereira
- Polytechnic Institute of Coimbra, ESTeSC-Coimbra Health School, Department of Biomedical Laboratory Sciences, Rua 5 de Outubro, S. Martinho do Bispo, Apart. 7006, 3046-854 Coimbra, Portugal; (M.P.); (A.C.)
| | - Armando Caseiro
- Polytechnic Institute of Coimbra, ESTeSC-Coimbra Health School, Department of Biomedical Laboratory Sciences, Rua 5 de Outubro, S. Martinho do Bispo, Apart. 7006, 3046-854 Coimbra, Portugal; (M.P.); (A.C.)
- Unidade I&D Química-Física Molecular, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - João P. Figueiredo
- Polytechnic Institute of Coimbra, ESTeSC-Coimbra Health School, Department of Complementary Sciences, Rua 5 de Outubro, S. Martinho do Bispo, Apart. 7006, 3046-854 Coimbra, Portugal;
| | - Helena Loureiro
- Polytechnic Institute of Coimbra, ESTeSC-Coimbra Health School, Department of Dietetics and Nutrition, Rua 5 de Outubro, S. Martinho do Bispo, Apart. 7006, 3046-854 Coimbra, Portugal;
| | - Carla Almeida
- Condi Alimentar, Quinta Palmares Armazém, Rua do Ferro, 2685-459 Camarate, Portugal;
| | - João Cotas
- Marine and Environmental Sciences Centre (MARE), Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (L.P.)
| | - Leonel Pereira
- Marine and Environmental Sciences Centre (MARE), Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (L.P.)
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
33
|
Zhang Z, Jung KJ, Zhang R, Muriel Mundo JL, McClements DJ. In situ monitoring of lipid droplet release from biopolymer microgels under simulated gastric conditions using magnetic resonance imaging and spectroscopy. Food Res Int 2019; 123:181-188. [DOI: 10.1016/j.foodres.2019.04.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/29/2019] [Accepted: 04/27/2019] [Indexed: 02/06/2023]
|
34
|
Montes C, Villaseñor MJ, Ríos Á. Analytical control of nanodelivery lipid-based systems for encapsulation of nutraceuticals: Achievements and challenges. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Wang M, Doi T, Hu X, McClements DJ. Influence of ionic strength on the thermostability and flavor (allyl methyl disulfide) release profiles of calcium alginate microgels. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|