Qu B, Xue J, Luo Y. Self-assembled caseinate-laponite® nanocomposites for curcumin delivery.
Food Chem 2021;
363:130338. [PMID:
34161872 DOI:
10.1016/j.foodchem.2021.130338]
[Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/12/2021] [Accepted: 06/05/2021] [Indexed: 01/10/2023]
Abstract
In this study, novel self-assembled protein-clay nanocomposites were developed for curcumin delivery. Experimentally, curcumin was dissolved and deprotonated in sodium caseinate-laponite® (NaCas-LAP) dispersion at pH 12.0 for 30 min followed by neutralization to pH = 7. Due to the pH-mediated dissociation and re-association process, curcumin was successfully encapsulated into NaCas-LAP nanocomposites. The colloidal properties and encapsulation capabilities of NaCas-LAP nanocomposites were investigated, including particle size, zeta potential, encapsulation efficiency, release profile in simulated gastrointestinal tract, as well as nanoscale morphology. The results indicated that upon neutralization, NaCas-LAP nanocomposites were re-associated into smaller particles due to strong hydrophobic interactions among NaCas, LAP and curcumin. Specifically, 0.10% curcumin loaded nanocomposites prepared with 2% NaCas and 0.5% LAP showed improved encapsulation performance (73.4%) with smaller particle size (100 nm). The as-prepared protein-clay nanocomposites hold promising potential to deliver lipophilic bioactive compounds, such as curcumin.
Collapse