1
|
Tian Y, Lei Q, Yang F, Xie J, Chen C. Development of cinnamon essential oil-loaded PBAT/thermoplastic starch active packaging films with different release behavior and antimicrobial activity. Int J Biol Macromol 2024; 263:130048. [PMID: 38336322 DOI: 10.1016/j.ijbiomac.2024.130048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The poly (butylene adipate-co-terephthalate)/thermoplastic starch (PBAT/TPS) active packaging films containing cinnamon essential oil (CEO) were fabricated by melting blending and extrusion casting method. The effects of TPS content (0 %, 10 %, 20 %, 30 %, 40 % and 50 %) on the properties of the films and their application in largemouth bass preservation were studied. As TPS content increased from 0 % to 50 %, the water vapor permeability increased from 7.923 × 10-13 (g•cm/(cm2•s•Pa)) to 23.967 × 10-13 (g•cm/(cm2•s•Pa)), the oxygen permeability decreased from 8.642 × 10-11 (cm3•m/(m2•s•Pa)) to 3.644 × 10-11 (cm3•m/(m2•s•Pa)), the retention of CEO in the films increased. The release rate of CEO from the films into food simulant (10 % ethanol) accelerated with increasing TPS. The films exhibited different antibacterial activity against E. coli, S. aureus, and S. putrefaciens. It was closely related with the release behavior of the CEO. The films containing CEO could efficiently inhibit the decomposition of protein and the growth of microorganisms in largemouth bass. It showed that the higher TPS in the films, the better inhibitory effect. This study provided a new idea for developing PBAT/TPS active films with different release behavior of active agents and different antibacterial activity for food packaging.
Collapse
Affiliation(s)
- Yifan Tian
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Qiao Lei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Fuxin Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai MOE Information Technology Co., Ltd., Shanghai 201600, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| | - Chenwei Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China.
| |
Collapse
|
2
|
V AK, M P, Srivastav PP, Mangaraj S, R P, Hasan M. Development of soy-based nanocomposite film: Modeling for barrier and mechanical properties and its application as cheese slice separator. J Texture Stud 2022; 53:809-819. [PMID: 34580884 DOI: 10.1111/jtxs.12636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
In the current study, soybean aqueous extract (SAE)-based nanocomposite film was developed by incorporating cellulose nanofiber (CNF) at various concentrations (0-10%). Effect of nanoreinforcement on essential properties of the nanocomposite film such as barrier, mechanical, water affinity, and optical properties were evaluated. Homogeneous films with improved barrier and mechanical properties were observed until 6% CNF, beyond which considerable reduction in desirable properties was noticed due to nanoparticle's agglomeration effect. Furthermore, the prediction of the mechanical and barrier properties of nanocomposite film was performed with mathematical models such as modified Halpin-Tsai and modified Nielsen equations, respectively. The model-fitting results reveal that the theoretically predicted values were in close agreement with the experimental values. Hence, these models were well suited for predicting respective properties. Model prediction also implies that the increase in the aspect ratio of fillers can considerably cause a reduction in water vapor permeability and improvement in mechanical properties. Suitability of developed film as cheese slice separator was evaluated: they had equivalent outcomes in terms of easiness in slice separation and wholeness of slices after separation compared to the commercial material.
Collapse
Affiliation(s)
- Ajesh Kumar V
- Centre of Excellence on Soybean Processing and Utilization, ICAR - Central Institute of Agricultural Engineering, Bhopal, India
| | - Pravitha M
- Agro Produce Processing Division, ICAR - Central Institute of Agricultural Engineering, Bhopal, India
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Shukadev Mangaraj
- Centre of Excellence on Soybean Processing and Utilization, ICAR - Central Institute of Agricultural Engineering, Bhopal, India
| | - Pandiselvam R
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR - Central Plantation Crops Research Institute, Kasaragod, India
| | - Muzaffar Hasan
- Agro Produce Processing Division, ICAR - Central Institute of Agricultural Engineering, Bhopal, India
| |
Collapse
|
3
|
Prada A, González RI, Camarada MB, Allende S, Torres A, Sepúlveda J, Rojas-Nunez J, Baltazar SE. Nanoparticle Shape Influence over Poly(lactic acid) Barrier Properties by Molecular Dynamics Simulations. ACS OMEGA 2022; 7:2583-2590. [PMID: 35252636 PMCID: PMC8890032 DOI: 10.1021/acsomega.1c04589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Climate change is leading us to search for new materials that allow a more sustainable environmental situation in the long term. Poly(lactic acid) (PLA) has been proposed as a substitute for traditional plastics due to its high biodegradability. Various components have been added to improve their mechanical, thermal, and barrier properties. The modification of the PLA barrier properties by introducing nanoparticles with different shapes is an important aspect to control the molecular diffusion of oxygen and other gas compounds. In this work, we have described changes in oxygen diffusion by introducing nanoparticles of different shapes through molecular dynamics simulations. Our model illustrates that the existence of curved surfaces and the deposition of PLA around them by short chains generate small holes where oxygen accumulates, forming clusters and reducing their mobility. From the several considered shapes, the sphere is the most suitable structure to improve the barrier properties of the PLA.
Collapse
Affiliation(s)
- Alejandro Prada
- Departamento de Computación e
Ingenierías, Facultad de Ciencias de la Ingeniería, Universidad
Católica del Maule, Talca 3480112, Chile
- Center for the Development of Nanoscience
and Nanotechnology (CEDENNA), Santiago 9170124,
Chile
| | - Rafael I. González
- Center for the Development of Nanoscience
and Nanotechnology (CEDENNA), Santiago 9170124,
Chile
- Centro de Nanotecnología Aplicada,
Facultad de Ciencias, Universidad Mayor, Santiago 9170124,
Chile
| | - María B. Camarada
- Facultad de Química y Farmacia, Departamento de
Química Inorgánica, Pontificia Universidad Católica de
Chile, Santiago 9170124, Chile
- Centro Investigación en Nanotecnología y
Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de
Chile, Santiago 9170124, Chile
| | - Sebastián Allende
- Center for the Development of Nanoscience
and Nanotechnology (CEDENNA), Santiago 9170124,
Chile
- Departamento de Física, Universidad de
Santiago de Chile (USACH), Santiago 9170124,
Chile
| | - Alejandra Torres
- Center for the Development of Nanoscience
and Nanotechnology (CEDENNA), Santiago 9170124,
Chile
- Packaging Innovation Center (LABEN), Food Science and
Technology Department, Technology Faculty, University of Santiago de
Chile, Santiago 9170124, Chile
| | - Javiera Sepúlveda
- Center for the Development of Nanoscience
and Nanotechnology (CEDENNA), Santiago 9170124,
Chile
- Packaging Innovation Center (LABEN), Food Science and
Technology Department, Technology Faculty, University of Santiago de
Chile, Santiago 9170124, Chile
| | - Javier Rojas-Nunez
- Center for the Development of Nanoscience
and Nanotechnology (CEDENNA), Santiago 9170124,
Chile
- Departamento de Física, Universidad de
Santiago de Chile (USACH), Santiago 9170124,
Chile
| | - Samuel E. Baltazar
- Center for the Development of Nanoscience
and Nanotechnology (CEDENNA), Santiago 9170124,
Chile
- Departamento de Física, Universidad de
Santiago de Chile (USACH), Santiago 9170124,
Chile
| |
Collapse
|
4
|
Rivadeneira-Velasco KE, Utreras-Silva CA, Díaz-Barrios A, Sommer-Márquez AE, Tafur JP, Michell RM. Green Nanocomposites Based on Thermoplastic Starch: A Review. Polymers (Basel) 2021; 13:polym13193227. [PMID: 34641042 PMCID: PMC8512963 DOI: 10.3390/polym13193227] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/19/2022] Open
Abstract
The development of bio-based materials has been a consequence of the environmental awareness generated over time. The versatility of native starch is a promising starting point for manufacturing environmentally friendly materials. This work aims to compile information on the advancements in research on thermoplastic starch (TPS) nanocomposites after the addition of mainly these four nanofillers: natural montmorillonite (MMT), organically modified montmorillonite (O-MMT), cellulose nanocrystals (CNC), and cellulose nanofibers (CNF). The analyzed properties of nanocomposites were mechanical, barrier, optical, and degradability. The most important results were that as the nanofiller increases, the TPS modulus and strength increase; however, the elongation decreases. Furthermore, the barrier properties indicate that that the incorporation of nanofillers confers superior hydrophobicity. However, the optical properties (transparency and luminosity) are mostly reduced, and the color variation is more evident with the addition of these fillers. The biodegradability rate increases with these nanocompounds, as demonstrated by the study of the method of burial in the soil. The results of this compilation show that the compatibility, proper dispersion, and distribution of nanofiller through the TPS matrix are critical factors in overcoming the limitations of starch when extending the applications of these biomaterials. TPS nanocomposites are materials with great potential for improvement. Exploring new sources of starch and natural nano-reinforcement could lead to a genuinely eco-friendly material that can replace traditional polymers in applications such as packaging.
Collapse
|
5
|
Design of active electrospun mats with single and core-shell structures to achieve different curcumin release kinetics. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109900] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|