Oyinloye TM, Yoon WB. Analysis of Mass Transfer and Shrinkage Characteristics of Chinese Cabbage (
Brassica rapa L. ssp.
pekinensis) Leaves during Osmotic Dehydration.
Foods 2024;
13:332. [PMID:
38275699 PMCID:
PMC10815306 DOI:
10.3390/foods13020332]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The mass transfer and shrinkage characteristics of Chinese cabbage (CC) during osmotic dehydration (OD) were investigated. The leaves were grouped into four sections and analyzed based on their morphological characteristics (i.e., maturity, width, and thickness). The sections were immersed in 2.0 mol/m3 NaCl for 120 h at 25 ± 2 °C. The diffusion coefficient (D) of the leaf blade was not significantly different with respect to the sections that were formed, but it was significantly different in the midrib in the increasing order of P1, P4, P3, and P2, with values of 1.12, 1.61, 1.84, and 2.06 (× 10-6), respectively, after a 1 h soaking period due to the different characteristics in morphology and structure, such as porosity (0.31, 0.41, 0.42, and 0.38 for positions 1, 2, 3, and 4, respectively) and fiber contents. Numerical simulation (NS) for CC was conducted with and without the consideration of shrinkage during OD. The shrinkage effect on the NaCl uptake analyzed using NS indicated no significant difference between 0 to 48 h for both models. However, changes in the NaCl concentration were observed from 48 h onwards, with a lesser concentration in the model with shrinkage for all sections. The difference in NaCl concentration for the models with and without shrinkage was within the standard error range (±0.2 mol/m3) observed during experimental analysis. This implies that the shrinkage effect can be overlooked during the modeling of CC to reduce computational power.
Collapse