1
|
Liu L, Bi J, Chi Y, Chi Y. Effects of pasteurization temperature and amino acids on the gelation behavior of liquid egg yolk: Emphasizing rheology, gel properties, intermolecular forces and microstructure. Food Chem 2025; 463:141508. [PMID: 39378724 DOI: 10.1016/j.foodchem.2024.141508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/30/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Pipeline blockage caused by liquid egg yolk (LEY) in the pasteurization process has become an urgent problem for egg industry. This study investigated the effects of amino acids (betaine/proline) on rheology of LEY and gel property of egg yolk gel (EYG) at various pasteurization temperatures (68, 72, and 76 °C). Rheological results revealed that 72 °C was the key transition point for increase in LEY thermal aggregation rate. Average particle size of EYG, BEYG and PEYG increased by 63.9 %, 27.3 % and 17.3 % with increasing pasteurization temperature. Amino acids promoted increase in disulfide bonding content and facilitated retention of free and bound water within gels. Moreover, amino acids enhanced crystallinity and order of gel structures. Amino acids can effectively mitigate thermal aggregation of LEY at mild temperatures and promote cross-linking of gel network at high temperatures. This study provides a theoretical foundation for heat resistance of LEY and application of EYG.
Collapse
Affiliation(s)
- Lan Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiahui Bi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Wang K, Li C, Zhu M, Zhang W, Yuan J, Liu X, Ma J, Wang Z, Zhou Y, Zhu Q, Jin Y, Liu Y. Redistribution and fusion of protein-lipid assemblies within the egg yolk sphere under slight non-destructive deformation causing a change in thermal gel properties. Food Chem 2024; 460:140577. [PMID: 39094341 DOI: 10.1016/j.foodchem.2024.140577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/21/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Egg yolk production processed after separating egg white is a common method to shorten cycle, but its taste quality will change even the vitelline membrane is intact. This might be related to the slight non-destructive deformation causing redistribution and fusion of protein-lipid assemblies within the egg yolk spheres. We investigated the mechanism of the change in thermal gel properties under slight deformation. The results of microscopic structural morphology revealed that the whole boiled egg yolk (WEY) underwent a transition in protein-lipid assembly morphology within yolk spheres, which changed from local aggregation to disordered fusion in shaken boiled egg yolks (SEYs). The spectroscopic and physicochemical properties analysis demonstrated that the redistribution of protein-lipid assemblies gave rise to marked changes in water migration, texture properties, molecular interactions, and oral sensation simulation of egg yolk thermal gels. This is benefit to guide the regulation of the taste quality egg yolk products in industry.
Collapse
Affiliation(s)
- Keshan Wang
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Chan Li
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Min Zhu
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Wenxin Zhang
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Jing Yuan
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xiaoli Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Jiaxuan Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Zhengcong Wang
- College of Economics and Management, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Ying Zhou
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Qiujin Zhu
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Yuanyuan Liu
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, College of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, 550025, China.
| |
Collapse
|
3
|
Chi Y, Ma Z, Wang R, Chi Y. A comprehensive review on freeze-induced deterioration of frozen egg yolks: Freezing behaviors, gelation mechanisms, and control techniques. Compr Rev Food Sci Food Saf 2024; 23:e70019. [PMID: 39289788 DOI: 10.1111/1541-4337.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
Over the years, the production of eggs has increased tremendously, with an estimated global egg production of 9.7 billion by 2050. Further processing of shell eggs to egg products has gained growing popularity. Liquid egg yolks, an innovative form of egg replacement, still suffer from short shelf-life issues, and freezing has been applied to maintain freshness. An undesirable phenomenon called "gelation" was found during the production of frozen egg yolks, which has attracted numerous scholars to study its mechanism and quality control methods. Therefore, we comprehensively reviewed the history of the studies on frozen egg yolks, including the production procedure, the fundamentals of freezing, the gelation mechanism, the factors affecting gelation behaviors, and the techniques to control the gelation behaviors of frozen egg yolks. Reporting the production procedure and freezing fundamentals of frozen egg yolks will give readers a better understanding of the science and technological aspects of frozen egg yolks. Furthermore, a comprehensive summary of the mechanism of egg yolk gel formation induced by freeze-thawing and relevant control techniques will provide insights to researchers and manufacturers in the field of frozen egg processing.
Collapse
Affiliation(s)
- Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin, P.R. China
| | - Zihong Ma
- College of Food Science, Northeast Agricultural University, Harbin, P.R. China
| | - Ruihong Wang
- College of Food Science, Northeast Agricultural University, Harbin, P.R. China
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
4
|
Huang X, Li X, Zhang Y, Li X, Zhang P, Song H, Huang Q, Fu G. Influence mechanisms of linoleic acid and oleic acid on the gel properties of egg yolk protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6787-6798. [PMID: 38567870 DOI: 10.1002/jsfa.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/07/2024] [Accepted: 04/03/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Gel property is among the crucial functional properties of egg yolk (EY), which determines the texture and flavor of EY products. In the present study, the effects of two unsaturated fatty acids [monounsaturated fatty acid oleic acid (OA) and diunsaturated fatty acid linoleic acid (LA)] on the gel properties of EY protein were investigated. RESULTS Compared with the blank group, the addition of LA and OA (10-50 g kg-1) improved the gel hardness (from 270.54 g to 385.85 g and 414.38 g, respectively) and viscosity coefficient (from 0.015 Pa.sn to 11.892 Pa.sn and 1.812 Pa.sn, respectively). The surface hydrophobicity of EY protein increased to a maximum value of 40 g kg-1 with the addition of both fatty acids (39.06 μg and 41.58 μg, respectively). However, excess unsaturated fatty acids (≥ 50 g kg-1) disrupted the completeness of the gel matrix and weakened the structural properties of the EY gel. CONCLUSION Both fatty acids improved the gel properties of EY protein. At the same addition level, OA was superior to LA in improving gel properties. The present study provides a theoretical underpinning for the sensible application of unsaturated fatty acids in improving EY gel properties. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyuan Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yufeng Zhang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiefei Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang, China
| | - Pei Zhang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongbo Song
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qun Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition of Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Ma Z, Qing M, Zang J, Xu Y, Gao X, Chi Y, Chi Y. Effects of freezing on the gelation behaviors of liquid egg yolks affected by saccharides: thermal behaviors and rheological and structural changes. Poult Sci 2024; 103:103657. [PMID: 38552569 PMCID: PMC10995874 DOI: 10.1016/j.psj.2024.103657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/08/2024] Open
Abstract
Monitoring and controlling the freezing process and thermal properties of foods is an important means to understand and maintain product quality. Saccharides were used in this study to regulate the gelation of liquid egg yolks induced by freeze‒thawing; the selected saccharides included sucrose, L-arabinose, xylitol, trehalose, D-cellobiose, and xylooligosaccharides. The regulatory effects of saccharides on frozen egg yolks were investigated by characterizing their thermal and rheological properties and structural changes. The results showed that L-arabinose and xylitol were effective gelation regulators. After freeze‒thawing, the sugared egg yolks exhibited a lower consistency index and fewer rheological units than those without saccharides, indicating controlled gelation. Weaker aggregation of egg yolk proteins was confirmed by smaller aggregates observed by confocal laser scanning microscopy and smaller particle sizes. Saccharides alleviated the freeze-induced conversion of α-helices to β-sheets in egg yolk proteins, exposing fewer Trp residues. Overall, L-arabinose showed the greatest improvement in regulating the gelation of egg yolks, followed by xylitol, which is correlated with its low molecular weight.
Collapse
Affiliation(s)
- Zihong Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Mingmin Qing
- College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jingnan Zang
- College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yonghao Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xin Gao
- College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China.
| |
Collapse
|
6
|
Hu G, Zhao B, Ma L, Yao X, Li S, Harlina PW, Wang J, Geng F. Inhibition of water-diluted precipitate formation from egg whites by ultrasonic pretreatment: Insights from quantitative proteomics analysis. Int J Biol Macromol 2024; 262:129973. [PMID: 38325697 DOI: 10.1016/j.ijbiomac.2024.129973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
The formation of the egg white precipitate (EWP) during dilution poses challenges in food processing. In this paper, the effects of 90 W and 360 W ultrasonic intensities on the inhibition of EWP formation were investigated. The findings revealed that 360 W sonication effectively disrupted protein aggregates, decreasing the dry matter of EWP by 5.24 %, particle size by 57.86 %, and viscosity by 82.28 %. Furthermore, the ultrasonic pretreatment unfolded protein structures and increased the content of β-sheet structures. Combined with quantitative proteomics and intermolecular forces analysis, the mechanism by which ultrasonic pretreatment inhibited water-diluted EWP formation by altering protein interactions was proposed: ultrasonic pretreatment disrupted electrostatic interactions centered on lysozyme, as well as hydrogen-bonding interactions between ovomucin and water. In conclusion, our research provides valuable insights into the application of ultrasonic pretreatment as a means to control and improve the quality of egg white-based products.
Collapse
Affiliation(s)
- Gan Hu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China; Institute for Advanced Study, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Bingye Zhao
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Lulu Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xuan Yao
- College of food science and technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shugang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Putri Widyanti Harlina
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, 45363 Bandung, Indonesia
| | - Jinqiu Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China.
| |
Collapse
|
7
|
Lu F, Chi Y, Chi Y. High-temperature glycosylation of saccharides to modify molecular conformation of egg white protein and its effect on the stability of high internal phase emulsions. Food Res Int 2024; 176:113825. [PMID: 38163687 DOI: 10.1016/j.foodres.2023.113825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
This paper investigates the freeze-thaw stability of oil-in-water emulsions stabilized by high-temperature wet heating glycosylation products. Glucose (Glu), D-fructose (Fru), xylose (Xyl), maltodextrin (MD), oligofructose (FO), and oligomeric isomaltulose (IMO) were chosen as sugar sources for the glycosylation reaction with egg white proteins (EWPs) at 120 °C to prepare the GEWPs. The study reveals that the type of sugar significantly influences the Maillard reactions with EWPs. The degree of glycosylation was highest in the Xyl group with the greatest reducing capacity and lowest in the MD, FO, and IMO groups. High-temperature wet glycosylation treatment induced changes in the secondary and tertiary structures of EWP. Elevated temperature exposed hydrophobic groups within the protein, while covalent binding of hydrophilic carbohydrates via the Maillard reaction decreased the protein's H0 value. Improved foaming and emulsifying properties were attributed to the increase in α-helix content, disulfide bond formation, and reduced surface tension. Emulsions prepared from GEWPs exhibited higher apparent viscosity and G' compared to those from natural EWPs, with the GEWP/Xyl group showing the highest values. After freeze-thaw treatment, the GEWP/Fru and GEWP/FO groups demonstrated superior stability and reduced freezing point, along with minimal microstructural alterations. These findings underscore the importance of sugar type in the stability of high internal phase emulsions (HIPEs) stabilized by GEWPs, indicating that a tailored Maillard reaction can yield stabilizers with exceptional freeze-thaw stability for emulsions.
Collapse
Affiliation(s)
- Fei Lu
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
8
|
Ma Y, Shan A, Chi Y. Changes in structural, rheological, and gel properties of egg white protein induced by preheating in the dry state. Int J Biol Macromol 2023; 248:125851. [PMID: 37467832 DOI: 10.1016/j.ijbiomac.2023.125851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
The knowledge of fundamental rheological concepts is essential to understand the gelling process of egg white proteins (EWP), which can be used to further manipulate the gel performance with desired sensorial attributes. In this study, the rheological and gel properties of EWP as influenced by heating in the dry state were investigated. The structural changes in dry heated EWP (DEWP) were also characterized in terms of morphology, protein stability, and protein microenvironment. The results showed that moderate dry heating induced linear aggregation of DEWP and decreased the denaturation temperature (Td) and enthalpy of denaturation (ΔH). Furthermore, the cross-linking on protein surface led to nonpolar microenvironment of hydrophobic groups, which lays the foundation of improved gel properties. The specific outcomes include the increase in the G'max and the G''max values, k'/k'' values of DEWP dispersions, gel hardness and gumminess of DEWP gels and a decrease in gelation temperature of DEWP dispersions. However, few changes were found in the springiness and cohesiveness of the DEWP gels with increasing dry heating time. Notably, gels prepared with DEWP also had better digestibility. Overall, these results can provide theoretical basis for quality control and sensory evaluation of DEWP in the food industry.
Collapse
Affiliation(s)
- Yanqiu Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
9
|
Liu Y, Wang K, Ma J, Wang Z, Zhu Q, Jin Y. Effect of yolk spheres as a key histological structure on the morphology, character, and oral sensation of boiled egg yolk gel. Food Chem 2023; 424:136380. [PMID: 37201471 DOI: 10.1016/j.foodchem.2023.136380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023]
Abstract
This study explored the effect of yolk sphere on gel state and taste differences between whole boiled egg yolk (WBEY) and stirred boiled egg yolks (SBEYs). Optical microscopy, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM) indicated that the WBEY was formed via the accumulation of yolk spheres, whereas the SBEY was a gel with a tight and ordered microstructure. The stirring disrupted the yolk sphere structure, leading to a homogeneous distribution of proteins and lipids in SBEYs, and a cross-linked network in gel was established with higher hardness and springiness. In the oral sensation simulation, WBEY had a higher saliva adsorption capacity and frictional force to oral soft tissue during swallowing than SBEY. This work contributes to a deeper understanding of the gel structure and taste of egg yolk, and provides a theoretical basis for the research on the formation of the gritty taste of egg yolks.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Keshan Wang
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Jiaxuan Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhengcong Wang
- College of Economics and Management, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qiujin Zhu
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
10
|
Shelf-life modeling for whole egg powder: Application of the general stability index and multivariate accelerated shelf-life test. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Glycosylation of egg white protein with maltodextrin in the dry state: Changes in structural and gel properties. Food Chem 2023; 401:134113. [DOI: 10.1016/j.foodchem.2022.134113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022]
|
12
|
Characterization of four thermogelled egg yolk varieties based on moisture and protein content. Poult Sci 2023; 102:102499. [PMID: 36805146 PMCID: PMC9984682 DOI: 10.1016/j.psj.2023.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
There are obvious differences between egg yolks of different varieties. Additionally, boiled eggs, which are widely liked and consumed globally, are nutrient rich. However, they absorb water in the esophagus during swallowing, and this result in an uncomfortable sensation. Here, we determined the moisture content and distribution as well as the protein contents and properties of 4 varieties of thermogelled egg yolks. Among the varieties, Green Shelled thermogelled egg yolk showed the highest protein content and solubility. Additionally, the ionic, hydrogen, and disulfide bonds corresponding to Rhode Island Red thermogelled egg yolk samples were the weakest, while the hydrophobic interaction force corresponding to the Hetian Dahei (HD) egg yolk samples was the weakest. Further, the distribution of the moisture contents of the 4 varieties was significantly different (P < 0.05). HD egg yolk showed the highest moisture content, and its bound and immobile moisture contents were significantly higher than those of the other 3 varieties. Egg yolk moisture content also affected free amino acid content, which was the highest for HD egg yolk. Therefore, owing to its high moisture content, HD egg yolk was conducive for chewing and swallowing and given its high free amino acid content, it also had a more suitable taste and flavor. The results of this study provide a theoretical basis for the application of egg yolks in food processing.
Collapse
|
13
|
Liu Y, Qing M, Zang J, Chi Y, Chi Y. Effects of CaCl 2 on salting kinetics, water migration, aggregation behavior and protein structure in rapidly salted separated egg yolks. Food Res Int 2023; 163:112266. [PMID: 36596177 DOI: 10.1016/j.foodres.2022.112266] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Salted egg yolks are valued by consumers for their delicious taste good processing characteristics. To improve the quality of rapidly salted separated egg yolks, we compared changes in the salting kinetics, textural properties, water migration, protein aggregation and structure of salted egg yolks in the presence or absence of CaCl2 for 24 h. CaCl2 increased the mass transfer driving force and diffusion coefficient during the salting process; as a result, the salted egg yolks exhibited increased hardness and decreased springiness and cohesiveness. Through low field nuclear magnetic resonance (LF NMR), it was confirmed that CaCl2 promoted the precipitation of lipids and the dehydration of egg yolk. Furthermore, CaCl2 promoted the bulk aggregation of proteins. The analyses of protein structures showed that the contents of β-sheets and irregular curls in CaCl2-salted egg yolk protein increased, while the contents of α-helices and β-turns decreased. CaCl2 affected the microenvironment of tryptophan residues and embedded these residues, enhancing protein aggregation. Based on the comprehensive information obtained in this study, adding CaCl2 to the salting solution improved the degree of protein polymerization in egg yolk; thus, this method might be used to improve the quality of egg yolks separated by salt.
Collapse
Affiliation(s)
- Yaotong Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingmin Qing
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingnan Zang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Ma Y, Qing M, Zang J, Shan A, Zhang H, Chi Y, Chi Y, Gao X. Molecular interactions in the dry heat-facilitated hydrothermal gel formation of egg white protein. Food Res Int 2022; 162:112058. [DOI: 10.1016/j.foodres.2022.112058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/19/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022]
|
15
|
Inhibiting effect of dry heat on the heat-induced aggregation of egg white protein. Food Chem 2022; 387:132850. [DOI: 10.1016/j.foodchem.2022.132850] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/09/2022] [Accepted: 03/27/2022] [Indexed: 01/07/2023]
|
16
|
Effects of NaCl on the Freezing-Thawing Induced Gelation of Egg Yolk at pH 2.0–8.0. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|