1
|
Stephenson MM, Coleman ME, Azzolina NA. Trends in Burdens of Disease by Transmission Source (USA, 2005-2020) and Hazard Identification for Foods: Focus on Milkborne Disease. J Epidemiol Glob Health 2024; 14:787-816. [PMID: 38546802 PMCID: PMC11442898 DOI: 10.1007/s44197-024-00216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/09/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Robust solutions to global, national, and regional burdens of communicable and non-communicable diseases, particularly related to diet, demand interdisciplinary or transdisciplinary collaborations to effectively inform risk analysis and policy decisions. OBJECTIVE U.S. outbreak data for 2005-2020 from all transmission sources were analyzed for trends in the burden of infectious disease and foodborne outbreaks. METHODS Outbreak data from 58 Microsoft Access® data tables were structured using systematic queries and pivot tables for analysis by transmission source, pathogen, and date. Trends were examined using graphical representations, smoothing splines, Spearman's rho rank correlations, and non-parametric testing for trend. Hazard Identification was conducted based on the number and severity of illnesses. RESULTS The evidence does not support increasing trends in the burden of infectious foodborne disease, though strongly increasing trends were observed for other transmission sources. Morbidity and mortality were dominated by person-to-person transmission; foodborne and other transmission sources accounted for small portions of the disease burden. Foods representing the greatest hazards associated with the four major foodborne bacterial diseases were identified. Fatal foodborne disease was dominated by fruits, vegetables, peanut butter, and pasteurized dairy. CONCLUSION The available evidence conflicts with assumptions of zero risk for pasteurized milk and increasing trends in the burden of illness for raw milk. For future evidence-based risk management, transdisciplinary risk analysis methodologies are essential to balance both communicable and non-communicable diseases and both food safety and food security, considering scientific, sustainable, economic, cultural, social, and political factors to support health and wellness for humans and ecosystems.
Collapse
|
2
|
Ablan M, Canning M, Koski L, Landsman L, Stapleton GS, Nichols M, Robyn M. Responding to outbreaks of illness linked to unpasteurized milk: A needs assessment of state health and agriculture departments. Zoonoses Public Health 2024; 71:480-488. [PMID: 38396326 PMCID: PMC11216851 DOI: 10.1111/zph.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
AIMS Consumption of unpasteurized milk can result in severe illness or death. In the United States, the number of people who regularly consume unpasteurized milk is relatively low, but outbreaks resulting from unpasteurized milk outnumber outbreaks linked to pasteurized milk. The sale of unpasteurized milk for human consumption through interstate commerce is prohibited at the federal level, but laws among states vary considerably with respect to the sale of unpasteurized milk. Each state has a different perspective on responding to and preventing outbreaks of illness linked to consuming unpasteurized milk. METHODS AND RESULTS We conducted a needs assessment of state health and agriculture departments to gather information on state-level strategies to prevent illnesses linked to consuming unpasteurized milk, characterize challenges states face, and identify areas where partners can support state efforts to prevent illnesses. We deployed a survey from 6 January 2021 to 1 March 2021, using a snowball sampling strategy and had 158 respondents. Of 115 respondents, 46 (40%) believed that state laws were ineffective in preventing illnesses, and 92 (80%) agreed that consumers continue to find ways to get unpasteurized milk despite laws restricting sale. Respondents from 19 states were aware of future legislative or regulatory efforts surrounding unpasteurized milk in their state, with 14 (74%) indicating these efforts would expand consumer access. The most common outbreak prevention strategies respondents mentioned included sharing knowledge and experiences with other public health and agriculture officials, providing information to inform legislative efforts, and communicating to the public about outbreaks. Most respondents (41/50, 91%) were interested in pursuing further efforts to prevent unpasteurized milk-associated illnesses in their state. CONCLUSIONS The results from this needs assessment can be used to inform future strategies for preventing illness outbreaks associated with unpasteurized milk consumption.
Collapse
Affiliation(s)
- Michael Ablan
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michelle Canning
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lia Koski
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lisa Landsman
- Public Health Law Program, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - G. Sean Stapleton
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Megin Nichols
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Misha Robyn
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Feodorova VA, Zaitsev SS, Khizhnyakova MA, Lavrukhin MS, Saltykov YV, Zaberezhny AD, Larionova OS. Complete genome of the Listeria monocytogenes strain AUF, used as a live listeriosis veterinary vaccine. Sci Data 2024; 11:643. [PMID: 38886393 PMCID: PMC11183264 DOI: 10.1038/s41597-024-03440-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
Listeria monocytogenes (Lm) is a highly pathogenic bacterium that can cause listeriosis, a relatively rare food-borne infectious disease that affects farm, domestic, wild animals and humans as well. The infected livestock is the frequent sources of Lm. Vaccination is one of the methods of controlling listeriosis in target farm animals to prevent Lm-associated food contamination. Here we report the complete sequence of the Lm strain AUF attenuated from a fully-virulent Lm strain by ultraviolet irradiation, successfully used since the 1960s as a live whole-cell veterinary vaccine. The de novo assembled genome consists of a circular chromosome of 2,942,932 bp length, including more than 2,800 CDSs, 17 pseudogenes, 5 antibiotic resistance genes, and 56/92 virulence genes. Two wild Lm strains, the EGD and the 10403S that is also used in cancer Immunotherapy, were the closest homologs for the Lm strain AUF. Although all three strains belonged to different sequence types (ST), namely ST12, ST85, and ST1538, they were placed in the same genetic lineage II, CC7.
Collapse
Affiliation(s)
- Valentina A Feodorova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia.
- Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia.
| | - Sergey S Zaitsev
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Mariya A Khizhnyakova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Maxim S Lavrukhin
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Yury V Saltykov
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| | - Alexey D Zaberezhny
- All-Russian Scientific Research and Technological Institute of Biological Industry, Biocombinat, Moscow, Russia
| | - Olga S Larionova
- Laboratory for Fundamental and Applied Research, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
- Department for Microbiology and Biotechnology, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, Saratov, Russia
| |
Collapse
|
4
|
Sun L, D'Amico DJ. Population dynamics and bidirectional transfer of Listeria monocytogenes and Shiga toxin-producing Escherichia coli during cheese production in wooden vats. Food Microbiol 2024; 120:104483. [PMID: 38431328 DOI: 10.1016/j.fm.2024.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Wooden vats are used in the production of some traditional cheeses as the biofilms on wooden vat surfaces are known to transfer large quantities of microbes to cheese. However, the safety of using wooden vats for cheese production remains controversial as the porous structure of wood provides an irregular surface that may protect any attached pathogen cells from cleaning and sanitation processes. On the other hand, the absence of pathogens in wooden vats has been reported in multiple studies and wooden materials have not been associated with foodborne illness outbreaks. The present study determined the survival of Listeria monocytogenes and Shiga toxin-producing Escherichia coli (STEC) during the production of an uncooked pressed cheese in wooden vats as well as their ability to transfer to the wood and then to milk used in subsequent batches of cheese production in the absence of formal cleaning. Results from the study indicate that pathogens inoculated in milk grew during production of the uncooked cheese, but showed limited ability to colonize the wooden vats and contaminate subsequent batches. These results suggest that the risks of using wooden vats to produce cheese is low if the milk is of high microbiological quality.
Collapse
Affiliation(s)
- Lang Sun
- Department of Animal Science, University of Connecticut, 302B Agricultural Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs, CT, 06269-4163, USA.
| | - Dennis J D'Amico
- Department of Animal Science, University of Connecticut, 302B Agricultural Biotechnology Laboratory, 1390 Storrs Road, U-4163, Storrs, CT, 06269-4163, USA.
| |
Collapse
|
5
|
Wang X, Zheng J, Luo L, Hong Y, Li X, Zhu Y, Wu Y, Bai L. Thermal inactivation kinetics of Listeria monocytogenes in milk under isothermal and dynamic conditions. Food Res Int 2024; 179:114010. [PMID: 38342535 DOI: 10.1016/j.foodres.2024.114010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/13/2024]
Abstract
Thermal processing is a widely used method to ensure the microbiological safety of milk. Predictive microbiology plays a crucial role in quantifying microbial growth and decline, providing valuable guidance on the design and optimization of food processing operations. This study aimed to investigate the thermal inactivation kinetics of Listeria monocytogenes in milk under both isothermal and dynamic conditions. The thermal inactivation of L. monocytogenes was conducted under isothermal and non-isothermal conditions in sterilized and pasteurized milk, with and without background microbiota, respectively. Furthermore, a secondary model was developed between the shoulder effect and temperature, which was then integrated into the dynamic model. The results showed that L. monocytogenes grown in Tryptic Soy Yeast Extract Broth (TSBYE) prior to thermal inactivation exhibited higher heat resistance compared to cells grown in sterilized milk at isothermal temperatures of 60.0, 62.5, and 65℃. Moreover, the presence of background microbiota in milk significantly enhanced the heat resistance of L. monocytogenes, as evidenced by the increased D-values from 1.13 min to 2.34 min, from 0.46 min to 0.53 min, and from 0.25 min to 0.34 min at 60.0, 62.5, and 65 °C, respectively, regardless of whether the background microbiota was inactivated after co-growth or co-inactivated with L. monocytogenes. For non-isothermal inactivation, the one-step dynamic model based on the log-linear with shoulder model effectively described the microbial inactivation curve and exhibited satisfactory model performance. The model developed contributes to improved risk assessment, enabling dairy processors to optimize thermal treatment and ensure microbiological safety.
Collapse
Affiliation(s)
- Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jiaming Zheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Linyin Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yi Hong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaofeng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqi Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yufan Wu
- Centre of Analysis and Test, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li Bai
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing 100022, China.
| |
Collapse
|
6
|
Luoto J, Keto-Timonen R, Kivistö R. Campylobacter species and genotype distribution in Finnish beef liver - Retail liver juice ideal for isolation and quantification. Int J Food Microbiol 2024; 411:110524. [PMID: 38118359 DOI: 10.1016/j.ijfoodmicro.2023.110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/18/2023] [Accepted: 12/10/2023] [Indexed: 12/22/2023]
Abstract
Campylobacteriosis, primarily caused by Campylobacter jejuni and C. coli, is the main bacterial zoonosis worldwide. While poultry is recognized as the main reservoir, bovines are considered another important reservoir for Campylobacter spp. found in human infections. In contrast to chicken, retail beef is seldom contaminated by Campylobacter species. However, beef liver is recognized to be frequently contaminated and has been linked to human infections via epidemiological investigations. Our aims were to evaluate the prevalence of Campylobacter spp. inside and on the surface of beef liver pieces at retail in Finland and to analyse the population in more detail using whole genome sequencing (WGS) to assess the public health relevance. A total of 90 retail beef livers were studied using both enrichment of the external peptone-saline rinse of the liver piece and direct culture from the inside after surface sterilization. Furthermore, 46 of the livers were also studied using direct culture of retail beef liver juice collected from the bottom of the consumer package to estimate the concentration of Campylobacter species. Overall, 44 (49 %) of the samples were positive for Campylobacter species, C. jejuni, C. fetus and C. lari being identified in 42 %, 8.9 % and 1.1 % of the samples, respectively. Direct culture of retail liver juice was a sensitive and convenient method for Campylobacter spp. detection, resulting in 48 % prevalence and a mean concentration of 49 cfu/ml (maximum 335 cfu/ml). Two samples (2.2 %), containing large hepatic ducts, were positive for C. jejuni internally, representing multilocus sequence typing (MLST) sequence type ST-19 and ST-21. WGS, core genome phylogeny and core genome MLST revealed that in most cases only one clearly distinct clone of clinically relevant C. jejuni or C. fetus was isolated from a single lot of samples. However, in some cases several distinct clones were identified simultaneously even from a single liver piece. In epidemiological investigations, it is thus highly advisable to genotype multiple isolates to capture the whole diversity of Campylobacter spp. from suspected food sources. Good kitchen hygiene, avoidance of cross-contamination and thorough cooking are important for limiting the transmission of campylobacteriosis.
Collapse
Affiliation(s)
- Jenna Luoto
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Keto-Timonen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
7
|
Sioziou E, Kakouri A, Bosnea L, Samelis J. Antilisterial activity of raw sheep milk from two native Epirus breeds: Culture-dependent identification, bacteriocin gene detection and primary safety evaluation of the antagonistic LAB biota. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100209. [PMID: 38116185 PMCID: PMC10727937 DOI: 10.1016/j.crmicr.2023.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Raw milk from native small ruminant breeds in Epirus, Greece, is a valuable natural source of autochthonous lactic acid bacteria (LAB) strains with superior biotechnological properties. In this study, two bulk milks (RM1, RM2) from two local sheep yards, intended for traditional Kefalotyri cheese production, were preselected for bacteriocin-like antilisterial activity by in vitro tests. Their antagonistic LAB biota was quantified followed by polyphasic (16S rRNA gene sequencing; IGS for Enterococcus; a multiplex-PCR for Leuconostoc) identification of 42 LAB (RM1/18; RM2/24) isolates further evaluated for bacteriocin encoding genes and primary safety traits. Representative isolates of the numerically dominant mesophilic LAB were Leuconostoc mesenteroides (10) in both RMs, Streptococcus parauberis (7) in RM2, and Lactococcus lactis (1) in RM1; the subdominant thermophilic LAB isolates were Enterococcus durans (8), E. faecium (6), E. faecalis (3), E. hirae (1), E. hermanniensis (1), Streptococcus lutetiensis (2), S. equinus (1) and S. gallolyticus (1). Based on their rpoB, araA, dsr and sorA profiles, six Ln. mesenteroides strains (8 isolates) were atypical lying between the subspecies mesenteroides and dextranicum, whereas two strains profiled with Ln. mesenteroides subsp. jonggajibkimchi that is first-time reported in Greek dairy food. Two RM1 E. faecium strain biotypes (3 isolates) showed strong, enterocin-mediated antilisterial activity due to entA/entB/entP possession. One E. durans from RM1 possessed entA and entP, while additional nine RM2 isolates of the E. faecium/durans group processed entA or entP singly. All showed direct (cell-associated) antilisterial activity only, as also both S. lutetiensis strains from RM2 did strongly. Desirably, no LAB isolate was β-hemolyrtic, or cytolysin-positive, or possessed vanA, vanB for vancomycin resistance, or agg, espA, hyl, and IS16 virulence genes. However, all three E. faecalis from RM2 possessed gelE and/or ace virulence genes. In conclusion, all Ln. mesenteroides strains, the two safe, enterocin A-B-P-producing E. faecium strains, and the two antilisterial S. lutetiensis strains should be validated further as potential costarter or adjunct cultures in Kefalotyri cheese. The prevalence of α-hemolytic pyogenic streptococci in raw milk, mainly S. parauberis in RM2, requires consideration in respect to subclinical mastitis in sheep and the farm hygiene overall.
Collapse
Affiliation(s)
- Eleni Sioziou
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization – DIMITRA, Ethnikis Antistaseos 3, Katsikas, Ioannina 45221, Greece
| | - Athanasia Kakouri
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization – DIMITRA, Ethnikis Antistaseos 3, Katsikas, Ioannina 45221, Greece
| | - Loulouda Bosnea
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization – DIMITRA, Ethnikis Antistaseos 3, Katsikas, Ioannina 45221, Greece
| | - John Samelis
- Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization – DIMITRA, Ethnikis Antistaseos 3, Katsikas, Ioannina 45221, Greece
| |
Collapse
|