Washington A, Varki N, Valderrama JA, Nizet V, Bui JD. Evaluation of IL-17D in Host Immunity to Group A
Streptococcus Infection.
THE JOURNAL OF IMMUNOLOGY 2020;
205:3122-3129. [PMID:
33077643 DOI:
10.4049/jimmunol.1901482]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
IL-17D is a cytokine that belongs to the IL-17 family and is conserved in vertebrates and invertebrates. In contrast to IL-17A and IL-17F, which are expressed in Th17 cells, IL-17D is expressed broadly in nonimmune cells. IL-17D can promote immune responses to cancer and viruses in part by inducing chemokines and recruiting innate immune cells such as NK cells. Although bacterial infection can induce IL-17D in fish and invertebrates, the role of mammalian IL-17D in antibacterial immunity has not been established. To determine whether IL-17D has a role in mediating host defense against bacterial infections, we studied i.p. infection by group A Streptococcus (GAS) in wild-type (WT) and Il17d -/- mice. Compared with WT animals, mice deficient in IL-17D experienced decreased survival, had greater weight loss, and showed increased bacterial burden in the kidney and peritoneal cavity following GAS challenge. In WT animals, IL-17D transcript was induced by GAS infection and correlated to increased levels of chemokine CCL2 and greater neutrophil recruitment. Of note, GAS-mediated IL-17D induction in nonimmune cells required live bacteria, suggesting that processes beyond recognition of pathogen-associated molecular patterns were required for IL-17D induction. Based on our results, we propose a model in which nonimmune cells can discriminate between nonviable and viable GAS cells, responding only to the latter by inducing IL-17D.
Collapse