1
|
Safar HA, Alatar F, Nasser K, Al-Ajmi R, Alfouzan W, Mustafa AS. The impact of applying various de novo assembly and correction tools on the identification of genome characterization, drug resistance, and virulence factors of clinical isolates using ONT sequencing. BMC Biotechnol 2023; 23:26. [PMID: 37525145 PMCID: PMC10391896 DOI: 10.1186/s12896-023-00797-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023] Open
Abstract
Oxford Nanopore sequencing technology (ONT) is currently widely used due to its affordability, simplicity, and reliability. Despite the advantage ONT has over next-generation sequencing in detecting resistance genes in mobile genetic elements, its relatively high error rate (10-15%) is still a deterrent. Several bioinformatic tools are freely available for raw data processing and obtaining complete and more accurate genome assemblies. In this study, we evaluated the impact of using mix-and-matched read assembly (Flye, Canu, Wtdbg2, and NECAT) and read correction (Medaka, NextPolish, and Racon) tools in generating complete and accurate genome assemblies, and downstream genomic analysis of nine clinical Escherichia coli isolates. Flye and Canu assemblers were the most robust in genome assembly, and Medaka and Racon correction tools significantly improved assembly parameters. Flye functioned well in pan-genome analysis, while Medaka increased the number of core genes detected. Flye, Canu, and NECAT assembler functioned well in detecting antimicrobial resistance genes (AMR), while Wtdbg2 required correction tools for better detection. Flye was the best assembler for detecting and locating both virulence and AMR genes (i.e., chromosomal vs. plasmid). This study provides insight into the performance of several read assembly and read correction tools for analyzing ONT sequencing reads for clinical isolates.
Collapse
Affiliation(s)
- Hussain A Safar
- OMICS Research Unit, Health Science Centre, Kuwait University, Hawalli Governorate, Kuwait
| | - Fatemah Alatar
- Serology and Molecular Microbiology Reference Laboratory, Mubarak Al-Kabeer Hospital, Ministry of Health, Hawalli Governorate, Kuwait
| | - Kother Nasser
- Serology and Molecular Microbiology Reference Laboratory, Mubarak Al-Kabeer Hospital, Ministry of Health, Hawalli Governorate, Kuwait
| | - Rehab Al-Ajmi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Hawalli Governorate, Kuwait
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Hawalli Governorate, Kuwait
- Microbiology Unit, Farwaniya Hospital, Ministry of Health, Al Farwaniyah Governorate, Kuwait
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Hawalli Governorate, Kuwait.
| |
Collapse
|
2
|
Ma S, Shen J, Xu Y, Ding P, Gao X, Pan Y, Wu H, Hu G, He D. Epidemic characteristics of the SXT/R391 integrated conjugative elements in multidrug-resistant Proteus mirabilis isolated from chicken farm. Poult Sci 2023; 102:102640. [PMID: 37068352 PMCID: PMC10130350 DOI: 10.1016/j.psj.2023.102640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
This study was designed to depict prevalence and antimicrobial resistance characteristics of Proteus mirabilis (P. mirabilis) strains in 4 chicken farms and to probe the transfer mechanism of resistance genes. A total of 187 P. mirabilis isolates were isolated from 4 chicken farms. The susceptibility testing of these isolates to 14 antimicrobials showed that the multidrug resistance (MDR) rate was as high as 100%. The β-lactamase resistance genes blaOXA-1, blaCTX-M-1G, blaCTX-M-9G and colistin resistance gene mcr-1 were highly carried in the P. mirabilis isolates. An MDR strain W47 was selected for whole genome sequencing (WGS) and conjugation experiment. The results showed that W47 carried 23 resistance genes and 64 virulence genes, and an SXT/R391 integrated conjugative elements (ICEs) named ICEPmiChn5 carrying 17 genes was identified in chromosome. ICEPmiChn5 was able to be excised from the chromosome of W47 forming a circular intermediate, but repeated conjugation experiments were unsuccessful. Among 187 P. mirabilis isolates, 144 (77.01%, 144/187) isolates carried ICEPmiChn5-like ICEs, suggesting that ICEs may be the major vector for the transmission of resistance genes among MDR chicken P. mirabilis strains in this study. The findings were conducive to insight into the resistance mechanism of chicken P. mirabilis strains and provide a theoretical basis for the use of antibiotics for the treatment of MDR P. mirabilis infections in veterinary clinic.
Collapse
Affiliation(s)
- Shengnan Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiaxing Shen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yakun Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengyun Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiao Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yushan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Hua Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
3
|
Edris SN, Hamad A, Awad DAB, Sabeq II. Prevalence, antibiotic resistance patterns, and biofilm formation ability of Enterobacterales recovered from food of animal origin in Egypt. Vet World 2023; 16:403-413. [PMID: 37042006 PMCID: PMC10082721 DOI: 10.14202/vetworld.2023.403-413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/30/2023] [Indexed: 03/04/2023] Open
Abstract
Background and Aim: The majority of animal-derived food safety studies have focused on foodborne zoonotic agents; however, members of the opportunistic Enterobacteriaceae (Ops) family are increasingly implicated in foodborne and public health crises due to their robust evolution of acquiring antimicrobial resistance and biofilms, consequently require thorough characterization, particularly in the Egyptian food sector. Therefore, this study aimed to determine the distribution and prevalence of Enterobacteriaceae family members in animal-derived foods, as well as their resistance to important antimicrobials and biofilm-forming potential.
Materials and Methods: A total of 274 beef, rabbit meat, chicken meat, egg, butter, and milk samples were investigated for the presence of Enterobacteriaceae. All isolated strains were first recognized using traditional microbiological techniques. Following that, matrix-assisted laser desorption ionization-time of flight mass spectrometry was used to validate the Enterobacteriaceae's identity. The isolated enterobacteria strains were tested on disk diffusion and crystal violet quantitative microtiter plates to determine their antibiotic resistance and capacity to form biofilms.
Results: There have been thirty isolates of Enterobacteriaceae from seven different species and four genera. Out of the three food types, Pseudomonas aeruginosa had the highest prevalence rate (4.1%). With three species, Enterobacter genera had the second-highest prevalence (3.28%) across five different food categories. In four different food types, the Klebsiella genera had the second-highest distribution and third-highest incidence (2.55%). Almost all isolates, except three Proteus mirabilis, showed prominent levels of resistance, particularly to beta-lactam antibiotics. Except for two Enterobacter cloacae and three P. mirabilis isolates, all isolates were classified as multidrug-resistant (MDR) or extensively multidrug-resistant (XDR). The multiple antibiotic resistance index (MARI) of the majority of isolates dropped between 0.273 and 0.727. The highest MARI was conferred by Klebsiella pneumoniae, at 0.727. Overall, 83.33% of the isolates had strong biofilm capacity, while only 16.67% exhibited moderate capacity.
Conclusion: The MDR, XDR, and strong biofilm indicators confirmed in 83.33% of the currently tested Enterobacteriaceae from animal-derived foods suggest that, if not addressed, there may be rising risks to Egypt's economy and public health.
Collapse
Affiliation(s)
- Shimaa N. Edris
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Ahmed Hamad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Dina A. B. Awad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Islam I. Sabeq
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| |
Collapse
|
4
|
Sanches MS, Silva LC, da Silva CR, Montini VH, de Oliva BHD, Guidone GHM, Nogueira MCL, Menck-Costa MF, Kobayashi RKT, Vespero EC, Rocha SPD. Prevalence of Antimicrobial Resistance and Clonal Relationship in ESBL/AmpC-Producing Proteus mirabilis Isolated from Meat Products and Community-Acquired Urinary Tract Infection (UTI-CA) in Southern Brazil. Antibiotics (Basel) 2023; 12:370. [PMID: 36830280 PMCID: PMC9952622 DOI: 10.3390/antibiotics12020370] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The present study aimed to evaluate the prevalence of antimicrobial resistance and clonal relationships in Proteus mirabilis isolated from chicken meat, beef, pork, and community-acquired urinary tract infections (UTI-CA). Chicken meat isolates showed the highest multidrug resistance (MDR), followed by those from pork and UTI-CA, whereas beef had relatively few MDR strains. All sources had strains that carried blaCTX-M-65, whereas blaCTX-M-2 and blaCMY-2 were only detected in chicken meat and UTI-CA isolates. This indicates that chicken meat should be considered an important risk factor for the spread of P. mirabilis carrying ESBL and AmpC. Furthermore, ESBL/AmpC producing strains were resistant to a greater number of antimicrobials and possessed more resistance genes than non-producing strains. In addition, the antimicrobial resistance genes qnrD, aac(6')-Ib-cr, sul1, sul2, fosA3, cmlA, and floR were also found. Molecular typing showed a genetic similarity between chicken meat and UTI-CA isolates, including some strains with 100% similarity, indicating that chicken can be a source of P. mirabilis causing UTI-CA. It was concluded that meat, especially chicken meat, can be an important source of dissemination of multidrug-resistant P. mirabilis in the community.
Collapse
Affiliation(s)
- Matheus Silva Sanches
- Laboratory of Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Luana Carvalho Silva
- Laboratory of Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Caroline Rodrigues da Silva
- Microorganism Research Center, Health Sciences Center, Department of Dermatological, Infectious and Parasitic Diseases, Medical School of São José do Rio Preto, São José do Rio Preto P.O. Box 15.090, Brazil
| | - Victor Hugo Montini
- Laboratory of Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Bruno Henrique Dias de Oliva
- Laboratory of Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Gustavo Henrique Migliorini Guidone
- Laboratory of Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Mara Corrêa Lelles Nogueira
- Microorganism Research Center, Health Sciences Center, Department of Dermatological, Infectious and Parasitic Diseases, Medical School of São José do Rio Preto, São José do Rio Preto P.O. Box 15.090, Brazil
| | - Maísa Fabiana Menck-Costa
- Laboratory of Basic and Applied Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Renata Katsuko Takayama Kobayashi
- Laboratory of Basic and Applied Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Eliana Carolina Vespero
- Department of Pathology, Health Sciences Center, Clinical and Toxicological Analysis, University Hospital of Londrina, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| | - Sergio Paulo Dejato Rocha
- Laboratory of Bacteriology, Center of Biological Sciences, Department of Microbiology, State University of Londrina, Londrina P.O. Box 10.011, Brazil
| |
Collapse
|
5
|
Li R, Zhou M, Lu J, Wei J. Antibiofilm Effects of Epigallocatechin Gallate Against Proteus mirabilis Wild-Type and Ampicillin-Induced Strains. Foodborne Pathog Dis 2021; 19:136-142. [PMID: 34726503 DOI: 10.1089/fpd.2021.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Proteus mirabilis is an opportunistic pathogen associated with nosocomial infections and foodborne diseases. The resistance and biofilm formation of P. mirabilis have been a great concern. In this study a multidrug-resistant P. mirabilis strain 012 was exposed to a lethal dose of ampicillin (10 mg/mL, 2.5-fold minimal bactericidal concentration) for 24 h at 37°C. After resuscitation and isolation, five variant isolates were selected and subjected to ampicillin induction by repeatedly streaking on ampicillin-containing plates (10 mg/mL) for at least three times. In biofilm formation assays by using crystal violet staining, we found that the variant strains had enhanced biofilm-forming abilities. (-)-epigallocatechin-3-gallate (EGCG) at a minimum inhibitory concentration (MIC) (256 μg/mL) significantly reduced the biofilm formation of all variant strains and the wild-type strain (p < 0.01). Sub-MIC of EGCG (128 μg/mL) suppressed the biofilms of wild-type and two variants. However, it stimulated the biofilms of the other three variants. The antibiofilm effects of EGCG against the wild-type strain were further confirmed by confocal laser scanning microscopy. Scanning electron microscopy revealed that EGCG induced variants to form more fibrous structures. Our results revealed that a lethal dose of antibiotic exposure increased antibiotic resistance and biofilm formation of P. mirabilis. EGCG may be used as a promising antibiofilm agent to prevent the P. mirabilis biofilm formation in the food industry. However, the sub-MIC of EGCG is not effective and will not be applied.
Collapse
Affiliation(s)
- Rui Li
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Min Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jieyuan Lu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Jiajun Wei
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Lu J, Zhao K, Xie H, Li R, Zhou M. Identification and Characterization of a Novel SXT/R391 Integrative and Conjugative Element in a Proteus mirabilis Food Isolate. Foodborne Pathog Dis 2021; 18:727-732. [PMID: 33970016 DOI: 10.1089/fpd.2020.2886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proteus mirabilis is an opportunistic human pathogen. In this study, a novel SXT/R391 integrative and conjugative element (ICE), named ICEPmiChnS012, was identified in the multidrug-resistant P. mirabilis strain S012 that was isolated from retail chicken in China. Whole genome sequencing revealed that ICEPmiChnS012 carried 22 resistance genes including aac(6')-Ib-cr, fosA3, blaOXA-1, blaCTX-M-65, and blaHMS-1. ICEPmiChnS012 harbored 10 copies of IS26 and IS26-mediated genetic new rearrangements caused variations in HS4 region. To our knowledge, an unusual gene cassette array dfrA1-ereA1-aadA2 was found in P. mirabilis in this study for the first time. And this is the first report of identification of aph3-VI and blaHMS-1 in VRIII region in P. mirabilis. The conjugation experiments proved that ICEPmiChnS012 could be transferred to Escherichia coli EC600 through conjugation. These findings demonstrated that ICEPmiChnS012 was a special ICE that carried the largest number of antimicrobial resistance genes in the family of SXT/R391 ICEs. This element could serve as an important vehicle for the dissemination of antibiotic resistance genes and should receive great concern.
Collapse
Affiliation(s)
- Jieyuan Lu
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Kang Zhao
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Huadong Xie
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Rui Li
- College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Min Zhou
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
7
|
Juraschek K, Borowiak M, Tausch SH, Malorny B, Käsbohrer A, Otani S, Schwarz S, Meemken D, Deneke C, Hammerl JA. Outcome of Different Sequencing and Assembly Approaches on the Detection of Plasmids and Localization of Antimicrobial Resistance Genes in Commensal Escherichia coli. Microorganisms 2021; 9:microorganisms9030598. [PMID: 33799479 PMCID: PMC8000739 DOI: 10.3390/microorganisms9030598] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 01/01/2023] Open
Abstract
Antimicrobial resistance (AMR) is a major threat to public health worldwide. Currently, AMR typing changes from phenotypic testing to whole-genome sequence (WGS)-based detection of resistance determinants for a better understanding of the isolate diversity and elements involved in gene transmission (e.g., plasmids, bacteriophages, transposons). However, the use of WGS data in monitoring purposes requires suitable techniques, standardized parameters and approved guidelines for reliable AMR gene detection and prediction of their association with mobile genetic elements (plasmids). In this study, different sequencing and assembly strategies were tested for their suitability in AMR monitoring in Escherichia coli in the routines of the German National Reference Laboratory for Antimicrobial Resistances. To assess the outcomes of the different approaches, results from in silico predictions were compared with conventional phenotypic- and genotypic-typing data. With the focus on (fluoro)quinolone-resistant E.coli, five qnrS-positive isolates with multiple extrachromosomal elements were subjected to WGS with NextSeq (Illumina), PacBio (Pacific BioSciences) and ONT (Oxford Nanopore) for in depth characterization of the qnrS1-carrying plasmids. Raw reads from short- and long-read sequencing were assembled individually by Unicycler or Flye or a combination of both (hybrid assembly). The generated contigs were subjected to bioinformatics analysis. Based on the generated data, assembly of long-read sequences are error prone and can yield in a loss of small plasmid genomes. In contrast, short-read sequencing was shown to be insufficient for the prediction of a linkage of AMR genes (e.g., qnrS1) to specific plasmid sequences. Furthermore, short-read sequencing failed to detect certain duplications and was unsuitable for genome finishing. Overall, the hybrid assembly led to the most comprehensive typing results, especially in predicting associations of AMR genes and mobile genetic elements. Thus, the use of different sequencing technologies and hybrid assemblies currently represents the best approach for reliable AMR typing and risk assessment.
Collapse
Affiliation(s)
- Katharina Juraschek
- Epidemiology, Zoonoses and Antimicrobial Resistance, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany;
- Correspondence: (K.J.); (J.A.H.)
| | - Maria Borowiak
- Study Centre for Genome Sequencing and Analysis, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany; (M.B.); (S.H.T.); (B.M.); (C.D.)
| | - Simon H. Tausch
- Study Centre for Genome Sequencing and Analysis, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany; (M.B.); (S.H.T.); (B.M.); (C.D.)
| | - Burkhard Malorny
- Study Centre for Genome Sequencing and Analysis, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany; (M.B.); (S.H.T.); (B.M.); (C.D.)
| | - Annemarie Käsbohrer
- Epidemiology, Zoonoses and Antimicrobial Resistance, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany;
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Saria Otani
- DTU Food, National Food Institute, Technical University of Denmark, Kemitorvet, Building 204, 2800 Kgs Lyngby, Denmark;
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Diana Meemken
- Institute of Food Safety and Food Hygiene, Working Group Meat Hygiene, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany;
| | - Carlus Deneke
- Study Centre for Genome Sequencing and Analysis, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany; (M.B.); (S.H.T.); (B.M.); (C.D.)
| | - Jens Andre Hammerl
- Epidemiology, Zoonoses and Antimicrobial Resistance, German Federal Institute for Risk Assessment (BfR), Max-Dohrn Str. 8-10, 10589 Berlin, Germany;
- Correspondence: (K.J.); (J.A.H.)
| |
Collapse
|
8
|
Miryala SK, Anbarasu A, Ramaiah S. Gene interaction network approach to elucidate the multidrug resistance mechanisms in the pathogenic bacterial strain Proteus mirabilis. J Cell Physiol 2020; 236:468-479. [PMID: 32542649 DOI: 10.1002/jcp.29874] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/11/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022]
Abstract
Proteus mirabilis is one among the most frequently identified pathogen in patients with the urinary tract infection. The multidrug resistance exhibited by P. mirabilis renders the treatment ineffective, and new progressive strategies are needed to overcome the antibiotic resistance (AR). We have analyzed the evolutionary relationship of 29 P. mirabilis strains available in the National Center for Biotechnology Information-Genome database. The antimicrobial resistance genes of P. mirabilis along with the enriched pathways and the Gene Ontology terms are analyzed using gene networks to understand the molecular basis of AR. The genes rpoB, tufB, rpsl, fusA, and rpoA could be exploited as potential drug targets as they are involved in regulating the vital functions within the bacterium. The drug targets reported in the present study will aid researchers in developing new strategies to combat multidrug-resistant P. mirabilis.
Collapse
Affiliation(s)
- Sravan K Miryala
- Medical and Biological Computing Laboratory, Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|