1
|
Morgado S, Fonseca É, Freitas F, Caldart R, Vicente AC. In-depth analysis of Klebsiella aerogenes resistome, virulome and plasmidome worldwide. Sci Rep 2024; 14:6538. [PMID: 38503805 PMCID: PMC10951357 DOI: 10.1038/s41598-024-57245-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Klebsiella aerogenes is an emergent pathogen associated with outbreaks of carbapenem-resistant strains. To date, studies focusing on K. aerogenes have been small-scale and/or geographically restricted. Here, we analyzed the epidemiology, resistome, virulome, and plasmidome of this species based on 561 genomes, spanning all continents. Furthermore, we sequenced four new strains from Brazil (mostly from the Amazon region). Dozens of STs occur worldwide, but the pandemic clones ST93 and ST4 have prevailed in several countries. Almost all genomes were clinical, however, most of them did not carry ESBL or carbapenemases, instead, they carried chromosomal alterations (omp36, ampD, ampG, ampR) associated with resistance to β-lactams. Integrons were also identified, presenting gene cassettes not yet reported in this species (blaIMP, blaVIM, blaGES). Considering the virulence loci, the yersiniabactin and colibactin operons were found in the ICEKp10 element, which is disseminated in genomes of several STs, as well as an incomplete salmochelin cluster. In contrast, the aerobactin hypervirulence trait was observed only in one ST432 genome. Plasmids were common, mainly from the ColRNAI replicon, with some carrying resistance genes (mcr, blaTEM, blaNDM, blaIMP, blaKPC, blaVIM) and virulence genes (EAST1, senB). Interestingly, 172 genomes of different STs presented putative plasmids containing the colicin gene.
Collapse
Affiliation(s)
- Sergio Morgado
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil.
| | - Érica Fonseca
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Fernanda Freitas
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Raquel Caldart
- Centro de Ciências da Saúde, Universidade Federal de Roraima, Boa Vista, RR, 69300-000, Brazil
| | - Ana Carolina Vicente
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil
| |
Collapse
|
2
|
Rodrigues SH, Nunes GD, Soares GG, Ferreira RL, Damas MSF, Laprega PM, Shilling RE, Campos LC, da Costa AS, Malavazi I, da Cunha AF, Pranchevicius MCDS. First report of coexistence of blaKPC-2 and blaNDM-1 in carbapenem-resistant clinical isolates of Klebsiella aerogenes in Brazil. Front Microbiol 2024; 15:1352851. [PMID: 38426065 PMCID: PMC10903355 DOI: 10.3389/fmicb.2024.1352851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Klebsiella aerogenes is an important opportunistic pathogen with the potential to develop resistance against last-line antibiotics, such as carbapenems, limiting the treatment options. Here, we investigated the antibiotic resistance profiles of 10 K. aerogenes strains isolated from patient samples in the intensive-care unit of a Brazilian tertiary hospital using conventional PCR and a comprehensive genomic characterization of a specific K. aerogenes strain (CRK317) carrying both the blaKPC-2 and blaNDM-1 genes simultaneously. All isolates were completely resistant to β-lactam antibiotics, including ertapenem, imipenem, and meropenem with differencing levels of resistance to aminoglycosides, quinolones, and tigecycline also observed. Half of the strains studied were classified as multidrug-resistant. The carbapenemase-producing isolates carried many genes of interest including: β-lactams (blaNDM-1, blaKPC-2, blaTEM-1, blaCTX-M-1 group, blaOXA-1 group and blaSHVvariants in 20-80% of the strains), aminoglycoside resistance genes [aac(6')-Ib and aph(3')-VI, 70 and 80%], a fluoroquinolone resistance gene (qnrS, 80%), a sulfonamide resistance gene (sul-2, 80%) and a multidrug efflux system transporter (mdtK, 70%) while all strains carried the efflux pumps Acr (subunit A) and tolC. Moreover, we performed a comprehensive genomic characterization of a specific K. aerogenes strain (CRK317) carrying both the blaKPC-2 and blaNDM-1 genes simultaneously. The draft genome assembly of the CRK317 had a total length of 5,462,831 bp and a GC content of 54.8%. The chromosome was found to contain many essential genes. In silico analysis identified many genes associated with resistance phenotypes, including β-lactamases (blaOXA-9, blaTEM-1, blaNDM-1, blaCTX-M-15, blaAmpC-1, blaAmpC-2), the bleomycin resistance gene (bleMBL), an erythromycin resistance methylase (ermC), aminoglycoside-modifying enzymes [aac(6')-Ib, aadA/ant(3")-Ia, aph(3')-VI], a sulfonamide resistance enzyme (sul-2), a chloramphenicol acetyltransferase (catA-like), a plasmid-mediated quinolone resistance protein (qnrS1), a glutathione transferase (fosA), PEtN transferases (eptA, eptB) and a glycosyltransferase (arnT). We also detected 22 genomic islands, eight families of insertion sequences, two putative integrative and conjugative elements with a type IV secretion system, and eight prophage regions. This suggests the significant involvement of these genetic structures in the dissemination of antibiotic resistance. The results of our study show that the emergence of carbapenemase-producing K. aerogenes, co-harboring blaKPC-2 and blaNDM-1, is a worrying phenomenon which highlights the importance of developing strategies to detect, prevent, and control the spread of these microorganisms.
Collapse
Affiliation(s)
- Saulo Henrique Rodrigues
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gustavo Dantas Nunes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gabriela Guerrera Soares
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Roumayne Lopes Ferreira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | - Pedro Mendes Laprega
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | - Andrea Soares da Costa
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | |
Collapse
|
3
|
Yao Y, Falgenhauer L, Rezazadeh Y, Falgenhauer J, Imirzalioglu C, Chakraborty T. Predominant transmission of KPC-2 carbapenemase in Germany by a unique IncN plasmid variant harboring a novel non-transposable element (NTE KPC -Y). Microbiol Spectr 2024; 12:e0256423. [PMID: 38084979 PMCID: PMC10790570 DOI: 10.1128/spectrum.02564-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/30/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Current infection control protocols assume that the spread of KPC-2 carbapenemase-producing Enterobacterales (KPC2-CPE) by detected carriers to other in-house patients is through clonal transmission and can be restricted by implementing containment measures. We examined the presence of the bla KPC-2 gene in different genera and species of Enterobacterales isolated from humans at different hospitals and surface waters between 2013 and 2019 in Germany. We found that a single IncN[pMLST15] plasmid carrying the bla KPC-2 gene on a novel non-Tn4401-element (NTEKPC-Y), flanked by an adjacent region encoding 12 other antibiotic resistance genes, was uniquely present in multiple species of KPC2-CPE isolates. These findings demonstrate the selective impact of specific IncN plasmids as major drivers of carbapenemase dissemination and suggest "plasmid-based endemicity" for KPC2-CPE. Studies on the dynamics of plasmid-based KPC2-CPE transmission and its presence in persistent reservoirs need to be urgently considered to implement effective surveillance and prevention measures in healthcare institutions.
Collapse
Affiliation(s)
- Yancheng Yao
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Linda Falgenhauer
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- Institute for Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Yalda Rezazadeh
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Jane Falgenhauer
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - the IncN Study GroupHauriAnja M.1HeinmüllerPetra1DomannEugen2GhoshHiren2GoesmannAlexander2JanssenStefan2GatermannSören3KaaseMartin3PfennigwerthNiels3ExnerMartin4OvermannJörg5BunkBoyke5SpröerCathrin5Hessisches Landesprüfungs- und Untersuchungsamt im Gesundheitswesen - HLPUG, Dillenburg, GermanyJustus Liebig University Giessen, Giessen, GermanyGerman National Reference Centre for Multidrug-Resistant Gram-negative Bacteria, Ruhr-University Bochum, Bochum, GermanyUniversity of Bonn, Bonn, GermanyLeibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
- Institute for Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| |
Collapse
|
4
|
de Oliveira ÉM, Beltrão EMB, Pimentel MIS, Lopes ACDS. Occurrence of high-risk clones of Klebsiella pneumoniae ST11, ST340, and ST855 carrying the blaKPC-2, blaNDM-1, blaNDM-5, and blaNDM-7 genes from colonized and infected patients in Brazil. J Appl Microbiol 2023; 134:lxad242. [PMID: 37880999 DOI: 10.1093/jambio/lxad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023]
Abstract
AIMS Determine which sequence type (ST) clones were carrying the blaKPC, blaNDM, blaVIM, blaIMP, and blaGES genes and their variants in clinical isolates of multidrug-resistant Klebsiella pneumoniae. METHODS AND RESULTS Ten K. pneumoniae isolates were obtained from the colonized and infected patients in a public hospital in the city of Recife-PE, in northeastern Brazil, and were further analyzed. The detection of carbapenem resistance genes and the seven housekeeping genes [for multilocus sequence typing (MLST) detection] were done with PCR and sequencing. The blaKPC and blaNDM genes were detected concomitantly in all isolates, with variants being detected blaNDM-1, blaNDM-5, blaNDM-7, and blaKPC-2. The blaKPC-2 and blaNDM-1 combination being the most frequent. Molecular typing by MLST detected three types of high-risk ST clones, associated with the clonal complex 258, ST11/CC258 in eight isolates, and ST855/CC258 and ST340/CC258 in the other two isolates. CONCLUSIONS These findings are worrying, as they have a negative impact on the scenario of antimicrobial resistance, and show the high genetic variability of K. pneumoniae and its ability to mutate resistance genes and risk of dissemination via different ST clones.
Collapse
Affiliation(s)
- Érica Maria de Oliveira
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco-UFPE, Recife, PE 50732-970, Brazil
| | | | | | | |
Collapse
|
5
|
de Oliveira Alves W, Scavuzzi AML, Beltrão EMB, de Oliveira ÉM, Dos Santos Vasconcelos CR, Rezende AM, de Souza Lopes AC. Occurrence of bla NDM-7 and association with bla KPC-2, bla CTX-M15, aac, aph, mph(A), catB3 and virulence genes in a clinical isolate of Klebsiella pneumoniae with different plasmids in Brazil. Arch Microbiol 2022; 204:459. [PMID: 35788427 DOI: 10.1007/s00203-022-03051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022]
Abstract
To characterize phenotypically and genotypically an isolate of multidrug-resistant (MDR) K. pneumoniae from a patient with septicemia in a hospital in Recife-PE, Brazil, resistance and virulence genes were investigated using PCR and sequencing the amplicons, and the plasmid DNA was also sequenced. The K74-A3 isolate was resistant to all β-lactams, including carbapenems, as well as to aminoglycosides and quinolones. By conducting a PCR analysis and sequencing, the variants blaNDM-7 associated with blaKPC-2 and the cps, wabG, fim-H, mrkD and entB virulence genes were identified. The analysis of plasmid revealed the presence of blaCTX-M15, aac(3)-IVa, aph(3')-Ia, aph(4)-Ia, aac(6')ib-cr, mph(A) and catB3, and also the plasmids IncX3, IncFIB, IncQ1, ColRNAI and ColpVC. To our knowledge, this is the first report of the blaNDM-7 gene in Recife-PE and we suggest that this variant is located in IncX3. These results alert us to the risk of spreading an isolate with a vast genetic arsenal of resistance, in addition to which several plasmids are present that favor the horizontal transfer of these genes.
Collapse
Affiliation(s)
- Weverton de Oliveira Alves
- Centro de Ciências Médicas, Universidade Federal de Pernambuco, Área de Medicina Tropical, Recife, PE, Brasil
| | | | | | - Érica Maria de Oliveira
- Centro de Ciências Médicas, Universidade Federal de Pernambuco, Área de Medicina Tropical, Recife, PE, Brasil
| | | | | | - Ana Catarina de Souza Lopes
- Centro de Ciências Médicas, Universidade Federal de Pernambuco, Área de Medicina Tropical, Recife, PE, Brasil.
| |
Collapse
|
6
|
Virulence factors of Proteus mirabilis clinical isolates carrying bla KPC-2 and bla NDM-1 and first report bla OXA-10 in Brazil. J Infect Chemother 2021; 28:363-372. [PMID: 34815168 DOI: 10.1016/j.jiac.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Proteus mirabilis is one of the main pathogens that cause urinary tract infections. Therefore, the aim of this study was to analyze and compare the genetic profile of 36 clinical isolates of P. mirabilis that carry and do not carry the blaKPC and blaNDM gene with respect to virulence factors (mrpG, pmfA, ucaA, nrpG and pbtA) and antimicrobial resistance (blaVIM,blaIMP, blaSPM, blaGES,blaOXA-23-like, blaOXA-48-like, blaOXA-58-like and blaOXA-10-like). METHODS The virulence and resistance genes were investigated by using PCR and sequencing. RESULTS ERIC-PCR typing showed that the isolates showed multiclonal dissemination and high genetic variability. The gene that was most found blaOXA-10-like (n = 18), followed by blaKPC (n = 10) and blaNDM (n = 8). To our knowledge, this is the first report of blaOXA-10 in P. mirabilis in Brazil, as well as the first report of the occurrence of P. mirabilis co-carrying blaOXA-10/blaKPC and blaOXA-10/blaNDM. The blaNDM or blaKPC carrier isolates showed important virulence genes, such as ucaA (n = 8/44.4%), pbtA (n = 10/55.5%) and nrpG (n = 2/11.1%). However, in general, the non-carrier isolates of blaKPC and blaNDM showed a greater number of virulence genes when compared to the carrier group. CONCLUSION Clinical isolates of P. mirabilis, in addition to being multi-drug resistant, presented efficient virulence factors that can establish infection outside the gastrointestinal tract.
Collapse
|
7
|
Fuga B, Cerdeira L, Moura Q, Fontana H, Fuentes-Castillo D, Carvalho AC, Lincopan N. Genomic data reveals the emergence of an IncQ1 small plasmid carrying bla KPC-2 in Escherichia coli of the pandemic sequence type 648. J Glob Antimicrob Resist 2021; 25:8-13. [PMID: 33662640 PMCID: PMC8213540 DOI: 10.1016/j.jgar.2021.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 02/16/2021] [Indexed: 11/17/2022] Open
Abstract
Epidemiological success of KPC has been linked to plasmids carrying blaKPC genes. An IncQ1 small plasmid carrying blaKPC-2 was found in pandemic Escherichia coli ST648. Plasmid analysis revealed blaKPC-2 on an NTEKPC-IId element with the aph(3')-VIa gene. Plasmid phylogeny confirmed >99% identity with IncQ/blaKPC-2 from Klebsiella pneumoniae. The emergence and rapid expansion of IncQ1/blaKPC-2 to novel hosts is discussed.
Objectives The global success of carbapenem-resistant pathogens has been attributed to large plasmids carrying blaKPC genes circulating among high-risk clones. In this study, we sequenced the genome of a carbapenem-resistant Escherichia coli strain (Ec351) isolated from a human infection. Phylogenomic analysis based on single nucleotide polymorphisms (SNPs) as well as the comparative resistome and plasmidome of globally disseminated blaKPC-2-positive E. coli strains with identical sequence type (ST) were further investigated. Methods Total DNA was sequenced using an Illumina NextSeq 500 platform and was assembled using Unicycler. Genomic data were evaluated through bioinformatics tools available from the Center of Genomic Epidemiology and by in silico analysis. Results Genomic analysis revealed the convergence of a wide resistome and virulome in E. coli ST648, showing a high-level phylogenetic relationship with a KPC-2-positive ST648 cluster identified in the USA and association with international clade 2. Additionally, the emergence of an IncQ1 small plasmid (pEc351) carrying blaKPC-2 (on an NTEKPC-IId element), aph(3')-VIa, and plasmid regulatory and replication genes in the pandemic clone ST648 is reported. Conclusion Identification of a blaKPC-2-positive IncQ1 plasmid in a high-risk E. coli clone represents rapid adaptation and expansion of these small plasmids encoding carbapenemases to novel bacterial hosts with global distribution, which deserves continued monitoring.
Collapse
Affiliation(s)
- Bruna Fuga
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil.
| | - Louise Cerdeira
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Quézia Moura
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Faculty of Health Sciences, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Herrison Fontana
- Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), Brazil; Department of Pathology, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Albalúcia C Carvalho
- Clinical Laboratory, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | - Nilton Lincopan
- Departmentof Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil; Department of Clinical Analysis, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil.
| |
Collapse
|
8
|
Clinical and Molecular Description of a High-Copy IncQ1 KPC-2 Plasmid Harbored by the International ST15 Klebsiella pneumoniae Clone. mSphere 2020; 5:5/5/e00756-20. [PMID: 33028683 PMCID: PMC7568653 DOI: 10.1128/msphere.00756-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In many parts of the world, carbapenem resistance is a serious public health concern. In Brazil, carbapenem resistance in Enterobacterales is mostly driven by the dissemination of KPC-2-producing K. pneumoniae clones. Despite being endemic in this country, only a few reports providing both clinical and genomic data are available in Brazil, which limit the understanding of the real clinical impact caused by the dissemination of different clones carrying blaKPC-2 in Brazilian hospitals. Although several of these KPC-2-producer K. pneumoniae isolates belong to the clonal complex 258 and carry Tn4401 transposons located on large plasmids, a concomitant emergence and silent dissemination of small high-copy-number blaKPC-2 plasmids are of importance, as described in this study. Our data identify a small high-copy-number IncQ1 KPC plasmid, its clinical relevance, and the potential for conjugative transfer into several K. pneumoniae isolates, belonging to different international lineages, such as ST258, ST101, and ST15. This study provides the genomic characterization and clinical description of bloodstream infections (BSI) cases due to ST15 KPC-2 producer Klebsiella pneumoniae. Six KPC-K. pneumoniae isolates were recovered in 2015 in a tertiary Brazilian hospital and were analyzed by whole-genome sequencing (WGS) (Illumina MiSeq short reads). Of these, two isolates were further analyzed by Nanopore MinION sequencing, allowing complete chromosome and plasmid circularization (hybrid assembly), using Unicycler software. The clinical analysis showed that the 30-day overall mortality for these BSI cases was high (83%). The isolates exhibited meropenem resistance (MICs, 32 to 128 mg/liter), with 3/6 isolates resistant to polymyxin B. The conjugative properties of the blaKPC-2 plasmid and its copy number were assessed by standard conjugation experiments and sequence copy number analysis. We identified in all six isolates a small (8.3-kb), high-copy-number (20 copies/cell) non-self-conjugative IncQ plasmid harboring blaKPC-2 in a non-Tn4401 transposon. This plasmid backbone was previously reported to harbor blaKPC-2 only in Brazil, and it could be comobilized at a high frequency (10−4) into Escherichia coli J53 and into several high-risk K. pneumoniae clones (ST258, ST15, and ST101) by a common IncL/M helper plasmid, suggesting the potential of international spread. This study thus identified the international K. pneumoniae ST15 clone as a carrier of blaKPC-2 in a high-copy-number IncQ1 plasmid that is easily transmissible among other common Klebsiella strains. This finding is of concern since IncQ1 plasmids are efficient antimicrobial resistance determinant carriers across Gram-negative species. The spread of such carbapenemase-encoding IncQ1 plasmids should therefore be closely monitored. IMPORTANCE In many parts of the world, carbapenem resistance is a serious public health concern. In Brazil, carbapenem resistance in Enterobacterales is mostly driven by the dissemination of KPC-2-producing K. pneumoniae clones. Despite being endemic in this country, only a few reports providing both clinical and genomic data are available in Brazil, which limit the understanding of the real clinical impact caused by the dissemination of different clones carrying blaKPC-2 in Brazilian hospitals. Although several of these KPC-2-producer K. pneumoniae isolates belong to the clonal complex 258 and carry Tn4401 transposons located on large plasmids, a concomitant emergence and silent dissemination of small high-copy-number blaKPC-2 plasmids are of importance, as described in this study. Our data identify a small high-copy-number IncQ1 KPC plasmid, its clinical relevance, and the potential for conjugative transfer into several K. pneumoniae isolates, belonging to different international lineages, such as ST258, ST101, and ST15.
Collapse
|