1
|
Peng X, Kong Q, Wei Q, Guo S, Chen Q, Peng M, An B, Wang X, Zhang C, Sang H. Verapamil enhances the activity of Caspofungin against Cryptococcus neoformans, coinciding with inhibited Ca 2+/CN pathway and damage to cell wall integrity. Int J Antimicrob Agents 2024; 64:107303. [PMID: 39151646 DOI: 10.1016/j.ijantimicag.2024.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/09/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVES Given the challenges posed by toxicity and drug resistance in the treatment of cryptococcal infections, we sought to explore the antifungal potential of verapamil (VER), a calcium channel blocker, against Cryptococcus neoformans (C. neoformans), and its potential synergy with antifungals, specifically caspofungin (CAS). MATERIALS AND METHODS In vitro and in vivo (Galleria mellonella) models were employed to assess VER's antifungal activity and its interaction with CAS. Mechanisms underlying the synergism were explored through analysis of cell wall integrity, membrane permeability, and gene expression related to the calcineurin pathway. Additionally, the influence of Ca2+ on chitin deacetylase activity was investigated. RESULTS VER exhibited a pronounced antifungal effect on C. neoformans and synergized with CAS, enhancing antifungal efficacy in Galleria mellonella. VER reduced chitosan content and disrupted cell wall integrity, evidenced by melanin leakage and fluorescence staining. VER+CAS modified membrane permeability, triggering intracellular ROS accumulation and mitochondrial membrane potential alterations. VER mitigated CAS-induced calcium fluctuations and downregulated calcineurin pathway genes. Furthermore, it was found that the enzyme activity of chitin deacetylase of C. neoformans is significantly influenced by the presence of Ca2+, suggesting that the use of VER may affect this activity. CONCLUSIONS The synergistic antifungal effect of VER and CAS represents a promising therapeutic strategy for cryptococcal infections. The multifaceted mechanisms, including disruption of cell wall integrity and modulation of membrane permeability, and regulation of intracellular calcium signaling pathways, offer new insights into antifungal drug development.
Collapse
Affiliation(s)
- Xinyuan Peng
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qingtao Kong
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Wei
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shilin Guo
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qiying Chen
- Department of Dermatology, the First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Min Peng
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Binyi An
- Department of Dermatology, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Wang
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chen Zhang
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hong Sang
- Department of Dermatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Babaei F, Mirzababaei M, Tavakkoli A, Nassiri-Asl M, Hosseinzadeh H. Can nonsteroidal anti-inflammatory drugs (NSAIDs) be repurposed for fungal infection? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:59-75. [PMID: 37589736 DOI: 10.1007/s00210-023-02651-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are an important class of anti-inflammatory drugs widely used for the treatment of musculoskeletal disorders, mild-to-moderate pain, and fever. This review aimed to explain the functional role and possible mechanisms of the antifungal effects of NSAIDs alone or in combination with antifungal drugs in vitro and in vivo. Several studies reported that NSAIDs such as aspirin, ibuprofen, diclofenac, indomethacin, ketorolac, celecoxib, flurbiprofen, and nimesulide had antifungal activities in vitro, either fungistatic or fungicidal, against different strains of Candida, Aspergillus, Cryptococcus, Microsporum, and Trichophyton species. These drugs inhibited biofilm adhesion and development, and yeast-to-hypha conversion which may be related to a prostaglandin E2 (PGE2)/PGEx-dependent mechanism. Modulating PGE2 levels by NSAIDs during fungal infection can be introduced as a possible mechanism to overcome. In addition, some important mechanisms of the antifungal activities of NSAIDs and their new derivatives on fungi and host immune responses are summarized. Overall, we believe that using NSAIDs along with classical antifungal drugs has the potential to be investigated as a novel therapeutic strategy in clinical studies. Furthermore, combination therapy can help manage resistant strains, increase the efficacy of antifungal drugs, and reduce toxicity.
Collapse
Affiliation(s)
- Fatemeh Babaei
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Tavakkoli
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, Iran.
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O. Box 9177948954, Mashhad, Iran.
| |
Collapse
|
3
|
Batista S, Fernandez-Pittol M, Nicolás LS, Martínez D, Rubio M, Garrigo M, Vila J, Tudó G, González-Martin J. In Vitro Effect of Three-Antibiotic Combinations plus Potential Antibiofilm Agents against Biofilm-Producing Mycobacterium avium and Mycobacterium intracellulare Clinical Isolates. Antibiotics (Basel) 2023; 12:1409. [PMID: 37760706 PMCID: PMC10526108 DOI: 10.3390/antibiotics12091409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Patients with chronic pulmonary diseases infected by Mycobacterium avium complex (MAC) often develop complications and suffer from treatment failure due to biofilm formation. There is a lack of correlation between in vitro susceptibility tests and the treatment of clinical isolates producing biofilm. We performed susceptibility tests of 10 different three-drug combinations, including two recommended in the guidelines, in biofilm forms of eight MAC clinical isolates. Biofilm developed in the eight isolates following incubation of the inoculum for 3 weeks. Then, the biofilm was treated with three-drug combinations with and without the addition of potential antibiofilm agents (PAAs). Biofilm bactericidal concentrations (BBCs) were determined using the Vizion lector system. All selected drug combinations showed synergistic activity, reducing BBC values compared to those treated with single drugs, but BBC values remained high enough to treat patients. However, with the addition of PAAs, the BBCs steadily decreased, achieving similar values to the combinations in planktonic forms and showing synergistic activity in all the combinations and in both species. In conclusion, three-drug combinations with PAAs showed synergistic activity in biofilm forms of MAC isolates. Our results suggest the need for clinical studies introducing PAAs combined with antibiotics for the treatment of patients with pulmonary diseases infected by MAC.
Collapse
Affiliation(s)
- Sara Batista
- Unitat de Microbiologia, Department de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (S.B.); (M.F.-P.); (J.V.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain; (L.S.N.); (D.M.)
| | - Mariana Fernandez-Pittol
- Unitat de Microbiologia, Department de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (S.B.); (M.F.-P.); (J.V.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain; (L.S.N.); (D.M.)
| | - Lorena San Nicolás
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain; (L.S.N.); (D.M.)
| | - Diego Martínez
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain; (L.S.N.); (D.M.)
| | - Marc Rubio
- Servei de Microbiologia, Fundació de Gestió de l’Hospital de la Santa Creu i Sant Pau, c/Sant Quintí 89, 08026 Barcelona, Spain; (M.R.); (M.G.)
- Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), c/Sant Quintí, 89, 08026 Barcelona, Spain
| | - Montserrat Garrigo
- Servei de Microbiologia, Fundació de Gestió de l’Hospital de la Santa Creu i Sant Pau, c/Sant Quintí 89, 08026 Barcelona, Spain; (M.R.); (M.G.)
- Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), c/Sant Quintí, 89, 08026 Barcelona, Spain
| | - Jordi Vila
- Unitat de Microbiologia, Department de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (S.B.); (M.F.-P.); (J.V.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain; (L.S.N.); (D.M.)
- CIBER of Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Griselda Tudó
- Unitat de Microbiologia, Department de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (S.B.); (M.F.-P.); (J.V.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain; (L.S.N.); (D.M.)
| | - Julian González-Martin
- Unitat de Microbiologia, Department de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, c/Casanova 143, 08036 Barcelona, Spain; (S.B.); (M.F.-P.); (J.V.)
- ISGlobal Barcelona, Institute for Global Health, c/Rosselló 132, 08036 Barcelona, Spain
- Servei de Microbiologia, CDB, Hospital Clínic de Barcelona, c/Villarroel 170, 08036 Barcelona, Spain; (L.S.N.); (D.M.)
- CIBER of Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Antifungal activity and potential mechanism of action of caspofungin in combination with ribavirin against Candida albicans. Int J Antimicrob Agents 2023; 61:106709. [PMID: 36640848 DOI: 10.1016/j.ijantimicag.2023.106709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
The number of invasive fungal infections has increased dramatically, resulting in high morbidity and mortality among immunocompromised patients. With increasing use of caspofungin (CAS), resistant strains have emerged frequently and led to limitations in the treatment of patients with severe invasive Candida albicans infections. Combination therapy is an important method to deal with this issue. As such, this study investigated the activity of CAS in combination with ribavirin (RBV) against C. albicans. The results of this in-vitro study showed that the minimum inhibitory concentrations (MICs) of CAS and RBV when they were used as monotherapy were 0.5-1 μg/mL and 2-8 μg/mL, respectively, while the MIC of CAS decreased from 0.5-1 μg/mL to 0.0625-0.25 μg/mL when used in combination with RBV, with a fractional inhibitory concentration index (FICI) ≤0.5. In addition, the RBV + CAS combination group displayed synergistic effects against C. albicans biofilm over 4 h; the sessile MIC (sMIC) of CAS decreased from 0.5-1 µg/mL to 0.0625-0.25µg/mL and the sMIC of RBV decreased from 4-16 µg/mL to 1-2 µg/mL, with FICI <0.5. The survival of C. albicans-infected Galleria mellonella was prolonged, the fungal burden was decreased, and the area of tissue damage was reduced after combination therapy. Further study showed that the mechanisms of action of the synergistic effect were related to the inhibition of biofilm formation, the inhibition of hyphal growth, and the activation of metacaspases, but were not related to the accumulation of reactive oxygen species. It is hoped that these findings will contribute to the understanding of drug resistance in C. albicans, and provide new insights for the application of RBV.
Collapse
|
5
|
Macias-Paz IU, Pérez-Hernández S, Tavera-Tapia A, Luna-Arias JP, Guerra-Cárdenas JE, Reyna-Beltrán E. Candida albicans the main opportunistic pathogenic fungus in humans. Rev Argent Microbiol 2022:S0325-7541(22)00084-0. [PMID: 36411138 DOI: 10.1016/j.ram.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/03/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
|
6
|
Di Bella S, Luzzati R, Principe L, Zerbato V, Meroni E, Giuffrè M, Crocè LS, Merlo M, Perotto M, Dolso E, Maurel C, Lovecchio A, Dal Bo E, Lagatolla C, Marini B, Ippodrino R, Sanson G. Aspirin and Infection: A Narrative Review. Biomedicines 2022; 10:biomedicines10020263. [PMID: 35203473 PMCID: PMC8868581 DOI: 10.3390/biomedicines10020263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Acetylsalicylic acid (ASA) is one of the most commonly used drugs in the world. It derives from the extract of white willow bark, whose therapeutic potential was known in Egypt since 1534 BC. ASA’s pharmacological effects are historically considered secondary to its anti-inflammatory, platelet-inhibiting properties; however, human studies demonstrating a pro-inflammatory effect of ASA exist. It is likely that we are aware of only part of ASA’s mechanisms of action; moreover, the clinical effect is largely dependent on dosages. During the past few decades, evidence of the anti-infective properties of ASA has emerged. We performed a review of such research in order to provide a comprehensive overview of ASA and viral, bacterial, fungal and parasitic infections, as well as ASA’s antibiofilm properties.
Collapse
Affiliation(s)
- Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (S.D.B.); (R.L.); (L.S.C.); (M.M.); (M.P.); (G.S.)
| | - Roberto Luzzati
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (S.D.B.); (R.L.); (L.S.C.); (M.M.); (M.P.); (G.S.)
| | - Luigi Principe
- Clinical Pathology and Microbiology Unit, “S. Giovanni di Dio” Hospital, 88900 Crotone, Italy;
| | - Verena Zerbato
- Infectious Diseases Unit, Trieste University Hospital, 34149 Trieste, Italy; (V.Z.); (E.D.); (C.M.); (A.L.)
| | - Elisa Meroni
- Clinical Microbiology and Virology Unit, “A. Manzoni” Hospital, 23900 Lecco, Italy;
| | - Mauro Giuffrè
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (S.D.B.); (R.L.); (L.S.C.); (M.M.); (M.P.); (G.S.)
- Correspondence: ; Tel.: +39-040-3994-305
| | - Lory Saveria Crocè
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (S.D.B.); (R.L.); (L.S.C.); (M.M.); (M.P.); (G.S.)
| | - Marco Merlo
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (S.D.B.); (R.L.); (L.S.C.); (M.M.); (M.P.); (G.S.)
| | - Maria Perotto
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (S.D.B.); (R.L.); (L.S.C.); (M.M.); (M.P.); (G.S.)
| | - Elisabetta Dolso
- Infectious Diseases Unit, Trieste University Hospital, 34149 Trieste, Italy; (V.Z.); (E.D.); (C.M.); (A.L.)
| | - Cristina Maurel
- Infectious Diseases Unit, Trieste University Hospital, 34149 Trieste, Italy; (V.Z.); (E.D.); (C.M.); (A.L.)
| | - Antonio Lovecchio
- Infectious Diseases Unit, Trieste University Hospital, 34149 Trieste, Italy; (V.Z.); (E.D.); (C.M.); (A.L.)
| | - Eugenia Dal Bo
- Cardiothoracic-Vascular Department, Azienda Sanitaria Universitaria Integrata, Cattinara University Hospital, 34149 Trieste, Italy;
| | - Cristina Lagatolla
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Bruna Marini
- Ulisse BioMed Labs, Area Science Park, 34149 Trieste, Italy; (B.M.); (R.I.)
| | - Rudy Ippodrino
- Ulisse BioMed Labs, Area Science Park, 34149 Trieste, Italy; (B.M.); (R.I.)
| | - Gianfranco Sanson
- Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy; (S.D.B.); (R.L.); (L.S.C.); (M.M.); (M.P.); (G.S.)
| |
Collapse
|
7
|
Feng W, Yang J, Ma Y, Xi Z, Ji Y, Ren Q, Ning H, Wang S. Cotreatment with Aspirin and Azole Drugs Increases Sensitivity of Candida albicans in vitro. Infect Drug Resist 2021; 14:2027-2038. [PMID: 34103949 PMCID: PMC8180266 DOI: 10.2147/idr.s314538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to investigate the effects of aspirin (acetyl salicylic acid [ASA]) combined with fluconazole (FCA), itraconazole (ITR), or voriconazole (VRC) on Candida albicans under planktonic and biofilm conditions. Methods A total of 39 clinical C. albicans strains were used to perform the in vitro drug sensitivity assay under different conditions using the M27-A4 broth microdilution method. The minimal inhibitory concentrations (MICs) and fractional inhibitory concentration index (FICI) values were calculated. C. albicans ZY23 was chosen for the further analyses. Results Under planktonic conditions, the half maximal MIC (MIC50) values of FCA, ITR, and VRC were 64-0.5 μg/mL, 32-0.0625 μg/mL, and 16-0.125 μg/mL, respectively, when applied, whereas in combination with ASA, the values decreased to 32-0.25 μg/mL, 8-0.0313 μg/mL, and 8-0.0313 μg/mL, respectively. Under biofilm conditions, FCA, ITR, or VRC alone showed MIC50 values of 128-8 μg/mL, 32-4 μg/mL, and 32-0.5 μg/mL, whereas in combination with ASA the values were decreased to 32-0.5 μg/mL, 16-0.5 μg/mL, and 8-0.0625 μg/mL, respectively. Analysis of the FICI showed that the sensitization rate of ASA to FCA, ITR, and FCA under planktonic conditions was 43.59%, whereas the sensitization rates of ASP to FCA, ITR, and FCA under biofilm conditions were 46.15%, 46.15%, and 48.72%, respectively. Additionally, the time-growth and time-kill curves of C. albicans ZY23 further verified the synergistic effects of ASA on azole drugs. Conclusion ASA may act as an enhancer of the inhibitory effects of azole drugs on the growth of clinical C. albicans under planktonic and biofilm conditions.
Collapse
Affiliation(s)
- Wenli Feng
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jing Yang
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yan Ma
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Zhiqin Xi
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Ying Ji
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Qiao Ren
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Huan Ning
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Shaoyan Wang
- The Department of Dermatovenereology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| |
Collapse
|