1
|
Xu J, Liu J, Zhao J, Tian T, Wang M, Yuan G, Peng Y, Zhang Y, Li Z, Kan B, Li Z, Lu X. Clonal and horizontal transmission of carbapenem-resistant Enterobacterales strains and genes via flies. Gut Pathog 2024; 16:70. [PMID: 39550588 PMCID: PMC11569619 DOI: 10.1186/s13099-024-00665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is one of the most pressing global public health challenges; in particular, the rapid dissemination of carbapenem-resistant Enterobacterales (CRE) is emerging as a significant concern worldwide. Flies, serving as carriers of pathogens, pose a potential threat in the transmission of antibiotic-resistant bacteria (ARB) between animals and humans. The aim of this study was to evaluate and reveal the potential risk of AMR spread by flies. METHODS A total of 450 flies were collected from four farms, four rural areas, and four urban areas in Dengfeng, Henan, China. To select CRE strains on the surface of flies, three flies sampled from the same geographical location were arbitrarily selected and placed into one tube of brain heart infusion broth (BHI), and the supernatant was screened using CHROMagar™ mSuperCARBA culture medium. Different colors and shapes of colonies were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA sequencing. Antimicrobial susceptibility testing for CRE strains was performed using broth microdilution. All CRE strains were whole-genome sequenced. Short-read sequencing was performed using MGISEQ-2000 and long-read sequencing was conducted using GridION. RESULTS Totally, 150 BHI tubes were screened for CRE strains, and 33 strains were identified as CRE positive. In 24 mSuperCARBA plates, only one species of CRE strain was isolated from each plate. In three plates, two different species of CRE strains were identified in each plate. In one plate, three different species of CRE strains were simultaneously isolated. Carbapenem resistance genes were detected in 81.8% of CRE strains, and blaNDM-1 was predominant (66.7%). No significant correlations between carbapenem-resistant phenotypes and carbapenem resistance genes were observed. The complete genomes of all 33 strains were obtained. Genome analysis revealed that clonal transmission events may have occurred among different farms and rural areas. Phylogenetic analysis revealed that blaNDM-1 IncFII plasmids could break bacterial species barrier for cross-host transmission in diverse areas. CONCLUSIONS To understand and control the transmission of AMR from the perspective of One Health, it is imperative to enhance surveillance of ARB, antibiotic resistance genes, and antibiotic-resistant plasmids in flies.
Collapse
Affiliation(s)
- Jialiang Xu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Jiaqi Liu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jiayong Zhao
- Institute of Infectious Disease Prevention and Control, Henan Center for Disease Control and Prevention, Zhengzhou, 450016, China
| | - Tian Tian
- Dengfeng Center for Disease Control and Prevention, Dengfeng, Zhengzhou, 450000, China
| | - Mengyu Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Gailing Yuan
- Dengfeng Center for Disease Control and Prevention, Dengfeng, Zhengzhou, 450000, China
| | - Yao Peng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuan Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Zhe Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhenpeng Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Xin Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| |
Collapse
|
2
|
Park JJ, Park H, Na SH, Seo YB, Lee J. Trends of antimicrobial susceptibilities and multidrug-resistant colonization rate in patients transferred from long-term care facilities during 2017-2022: a cross-sectional study. BMC Infect Dis 2024; 24:235. [PMID: 38383425 PMCID: PMC10882737 DOI: 10.1186/s12879-024-09145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND With the global increase in the older population, the proportion of those receiving care in long-term care facilities (LTCFs) has also been increasing. We assessed the epidemiology, antibiotic susceptibility, and colonization status of drug-resistant organisms in patients transferred from LTCFs. METHODS We retrospectively reviewed the medical records of patients transferred from LTCFs between 2017 and 2022. The reasons for admission, antimicrobial susceptibility, and colonization rates of carbapenem-resistant Enterobacterales (CRE), methicillin-resistant Staphylococcus aureus (MRSA), and carbapenem-resistant Acinetobacter baumannii (CRAB) were recorded. We analyzed the susceptibility and colonization rates by year to identify trends. RESULTS Of the 936 patients transferred from LTCFs, 54.3% were admitted to the intensive care unit and 12.5% died. The most common reason for admission was infection (n = 573, 61.2%), followed by gastrointestinal bleeding (n = 67, 7.2%) and cerebrovascular disorder (n = 65, 6.9%). A total of 452 Enterobacterales strains were isolated, and their susceptibility rates to ciprofloxacin and cefotaxime were 33.3% and 35.6%, respectively. A total of 54.9% were extended-spectrum beta-lactamase-producing strains, and 4.9% of them were carbapenem-resistant, both of which showed an increasing trend (P = 0.024 and P < 0.001, respectively). The prevalence rates of CRE, CRAB, and MRSA colonization were 9.2%, 7.1%, and 23.1%, respectively. CRE colonization showed a significant increase (P < 0.001), with carbapenemase-producing Enterobacterales accounting for 75.9% of cases. CONCLUSIONS Patients transferred from LTCFs are primarily affected by infections and exhibit high resistance rates. The increasing trend in CRE colonization rates each year highlights the need for the implementation of rigorous infection control measures for effective management.
Collapse
Affiliation(s)
- Jin Ju Park
- Division of Infectious Disease, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, 1 Singil-Ro, Yeongdeungpo-Gu, Seoul, 07441, Republic of Korea
| | - Hyejin Park
- Division of Infectious Disease, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, 1 Singil-Ro, Yeongdeungpo-Gu, Seoul, 07441, Republic of Korea
| | - Sun Hee Na
- Division of Infectious Disease, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, 1 Singil-Ro, Yeongdeungpo-Gu, Seoul, 07441, Republic of Korea
| | - Yu Bin Seo
- Division of Infectious Disease, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, 1 Singil-Ro, Yeongdeungpo-Gu, Seoul, 07441, Republic of Korea.
| | - Jacob Lee
- Division of Infectious Disease, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, 1 Singil-Ro, Yeongdeungpo-Gu, Seoul, 07441, Republic of Korea
| |
Collapse
|
3
|
Boutzoukas AE, Komarow L, Chen L, Hanson B, Kanj SS, Liu Z, Salcedo Mendoza S, Ordoñez K, Wang M, Paterson DL, Evans S, Ge L, Giri A, Hill C, Baum K, Bonomo RA, Kreiswirth B, Patel R, Arias CA, Chambers HF, Fowler VG, van Duin D. International Epidemiology of Carbapenemase-Producing Escherichia coli. Clin Infect Dis 2023; 77:499-509. [PMID: 37154071 PMCID: PMC10444003 DOI: 10.1093/cid/ciad288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Carbapenemase-producing (CP) Escherichia coli (CP-Ec) are a global public health threat. We aimed to describe the clinical and molecular epidemiology and outcomes of patients from several countries with CP-Ec isolates obtained from a prospective cohort. METHODS Patients with CP-Ec were enrolled from 26 hospitals in 6 countries. Clinical data were collected, and isolates underwent whole-genome sequencing. Clinical and molecular features and outcomes associated with isolates with or without metallo-β-lactamases (MBLs) were compared. The primary outcome was desirability of outcome ranking (DOOR) at 30 days after the index culture. RESULTS Of the 114 CP-Ec isolates in Consortium on resistance against carbapenems in Klebsiella and other Enterobacterales-2 (CRACKLE-2), 49 harbored an MBL, most commonly blaNDM-5 (38/49, 78%). Strong regional variations were noted with MBL-Ec predominantly found among patients in China (23/49). Clinically, MBL-Ec were more often from urine sources (49% vs 29%), less often met criteria for infection (39% vs 58%, P = .04), and had lower acuity of illness when compared with non-MBL-Ec. Among patients with infection, the probability of a better DOOR outcome for a randomly selected patient with MBL-Ec as compared with non-MBL-Ec was 62% (95% CI: 48.2-74.3%). Among infected patients, non-MBL-Ec had increased 30-day (26% vs 0%; P = .02) and 90-day (39% vs 0%; P = .001) mortality compared with MBL-Ec. CONCLUSIONS Emergence of CP-Ec was observed with important geographic variations. Bacterial characteristics, clinical presentations, and outcomes differed between MBL-Ec and non-MBL-Ec. Mortality was higher among non-MBL isolates, which were more frequently isolated from blood, but these findings may be confounded by regional variations.
Collapse
Affiliation(s)
- Angelique E Boutzoukas
- Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | - Lauren Komarow
- The Biostatistics Center, George Washington University, Rockville, Maryland, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Blake Hanson
- Center for Infectious Diseases and Microbial Genomics, UTHealth, McGovern School of Medicine at Houston, Houston, Texas, USA
| | - Souha S Kanj
- Division of Infectious Diseases, and Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Zhengyin Liu
- Infectious Disease Section, Department of Internal Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Soraya Salcedo Mendoza
- Servicio de Infectología, Organizacion Clinica General del Norte, Barranquilla, Colombia
| | - Karen Ordoñez
- Department of Infectious Diseases, E.S.E. Hospital Universitario, San Jorge de Pereira, Pereira, Colombia
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - David L Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Scott Evans
- The Biostatistics Center, George Washington University, Rockville, Maryland, USA
| | - Lizhao Ge
- The Biostatistics Center, George Washington University, Rockville, Maryland, USA
| | - Abhigya Giri
- The Biostatistics Center, George Washington University, Rockville, Maryland, USA
| | - Carol Hill
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | - Keri Baum
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | - Robert A Bonomo
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- VA–Case Center for Antibiotic Resistance and Epidemiology (Case-VA CARES), Cleveland, Ohio, USA
| | - Barry Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, and Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Cesar A Arias
- Division of Infectious Diseases and Center for Infectious Diseases, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
| | - Henry F Chambers
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Vance G Fowler
- Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Bastidas-Caldes C, Cisneros-Vásquez E, Zambrano A, Mosquera-Maza A, Calero-Cáceres W, Rey J, Yamamoto Y, Yamamoto M, Calvopiña M, de Waard JH. Co-Harboring of Beta-Lactamases and mcr-1 Genes in Escherichia coli and Klebsiella pneumoniae from Healthy Carriers and Backyard Animals in Rural Communities in Ecuador. Antibiotics (Basel) 2023; 12:antibiotics12050856. [PMID: 37237759 DOI: 10.3390/antibiotics12050856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Few studies have addressed drug resistance of Enterobacterales in rural communities in developing countries. This study aimed to determine the coexistence of extended-spectrum β-lactamase (ESBL) and carbapenemase genes in Escherichia coli and Klebsiella pneumoniae strains carrying the mcr-1 gene in rural communities in Ecuador from healthy humans and their backyard animals. Sixty-two strains, thirty E. coli and thirty-two K. pneumoniae strains carrying the mcr-1 gene were selected from a previous study. PCR were performed for the presence of ESBLs and carbapenemase genes. The strains were further characterized, and the genetic relationship was studied with multi-locus sequencing typing (MLST) of seven housekeeping genes. Fifty-nine of the sixty-two mcr-1 isolates (95%) harbored at least on β-lactam resistance gene. The most prevalent ESBL genes were the blaTEM genes (present in in 80% of the E. coli strains) and the blaSHV gene (present in 84% of the K. pneumoniae strains). MSLT analysis revealed 28 different sequence types (ST); 15 for E. coli and 12 for K. pneumoniae, with most ST never described in humans and animals. The coexistence of mcr-1 and β-lactams resistant genes in E. coli and K. pneumoniae strains is alarming and threatens the efficacy of last-resort antibiotics. Our findings highlight backyard animals as a reservoir of mcr-1/β-lactams resistant genes.
Collapse
Affiliation(s)
- Carlos Bastidas-Caldes
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de las Américas, Quito 170124, Ecuador
| | - Emily Cisneros-Vásquez
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de las Américas, Quito 170124, Ecuador
| | - Antonella Zambrano
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de las Américas, Quito 170124, Ecuador
| | | | - William Calero-Cáceres
- UTA RAM One Health, Department of Food and Biotechnology Science and Engineering, Universidad Técnica de Ambato, Ambato 180103, Ecuador
| | - Joaquín Rey
- Unidad de Patología Infecciosa y Epidemiología, Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Yoshimasa Yamamoto
- The United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan
| | - Mayumi Yamamoto
- Health Administration Center, Gifu University, Gifu 501-1193, Japan
| | - Manuel Calvopiña
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de las Américas, Quito 170124, Ecuador
| | - Jacobus H de Waard
- One Health Research Group, Facultad de Ciencias de la Salud, Universidad de las Américas, Quito 170124, Ecuador
| |
Collapse
|
5
|
Giufrè M, Errico G, Monaco M, Del Grosso M, Sabbatucci M, Pantosti A, Cerquetti M, Pagnotta M, Marra M, Carollo M, Rossini A, Fogato E, Cesana E, Gentiloni Silverj F, Zabzuni D, Tinelli M. Whole Genome Sequencing and Molecular Analysis of Carbapenemase-Producing Escherichia coli from Intestinal Carriage in Elderly Inpatients. Microorganisms 2022; 10:microorganisms10081561. [PMID: 36013979 PMCID: PMC9413394 DOI: 10.3390/microorganisms10081561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 01/27/2023] Open
Abstract
The spread of carbapenemase-producing (CP) Enterobacterales is currently a worldwide concern, especially in the elderly. Twelve CP-E. coli isolated from rectal swabs of colonized inpatients aged ≥65 years from four hospitals in two Italian cities (Milan and Rome) were analyzed by whole genome sequencing (WGS) to obtain multi-locus sequence typing (MLST), identification of carbapenemase-encoding genes, resistome, plasmid content, and virulence genes. MLST analysis showed the presence of 10 unrelated lineages: ST410 (three isolates from three different hospitals in two cities) and ST12, ST38, ST69, ST95, ST131, ST189, ST648, ST1288, and ST1598 (one isolate each). Most isolates (9/12, 75%) contained a serine-β-lactamase gene (5 blaKPC-3, 2 blaKPC-2, and 2 blaOXA-181), while three isolates harbored a metallo-β-lactamase gene (two blaNDM-5 and one blaVIM-1). In most CP-E. coli, the presence of more than one plasmid was observed, with the predominance of IncF. Several virulence genes were detected. All isolates contained genes enhancing the bacterial fitness, such as gad and terC, and all isolates but one, fimH, encoding type 1 fimbriae. In conclusion, CP-E. coli clones colonizing elderly patients showed heterogeneous genetic backgrounds. We recommend strict surveillance to monitor and prevent the spread of successful, high-risk clones in healthcare settings.
Collapse
Affiliation(s)
- Maria Giufrè
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
- Correspondence:
| | - Giulia Errico
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Monica Monaco
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Maria Del Grosso
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Michela Sabbatucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
- Ministry of Health, Directorate General Health Prevention, Communicable Diseases and International Prophylaxis, 00144 Rome, Italy
| | - Annalisa Pantosti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Marina Cerquetti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Michela Pagnotta
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (G.E.); (M.M.); (M.D.G.); (M.S.); (A.P.); (M.C.); (M.P.)
| | - Manuela Marra
- Core Facilities Technical-Scientific Service (FAST), Istituto Superiore di Sanità, 00161 Rome, Italy; (M.M.); (M.C.)
| | - Maria Carollo
- Core Facilities Technical-Scientific Service (FAST), Istituto Superiore di Sanità, 00161 Rome, Italy; (M.M.); (M.C.)
| | | | - Elena Fogato
- Golgi-Redaelli Geriatric Institute, 20146 Milan, Italy;
| | - Elisabetta Cesana
- IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy; (E.C.); (D.Z.); (M.T.)
| | | | - Dorjan Zabzuni
- IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy; (E.C.); (D.Z.); (M.T.)
| | - Marco Tinelli
- IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy; (E.C.); (D.Z.); (M.T.)
- Italian Society of Infectious and Tropical Diseases (SIMIT), 59100 Prato, Italy
| |
Collapse
|