1
|
Krivonogova AS, Bruter AV, Makutina VA, Okulova YD, Ilchuk LA, Kubekina MV, Khamatova AY, Egorova TV, Mymrin VS, Silaeva YY, Deykin AV, Filatov MA, Isaeva AG. AAV infection of bovine embryos: Novel, simple and effective tool for genome editing. Theriogenology 2022; 193:77-86. [PMID: 36156427 DOI: 10.1016/j.theriogenology.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022]
Abstract
Adeno-associated viruses (AAV) are widely used in the field of genetically modified organism production. In this work, transduction of bovine embryos by AAV was selected as a potential approach to perform genetic modifications: we have used recombinant AAV to produce GFP-positive bovine embryos. Five different AAV serotypes were used to evaluate their ability to deliver genetic material into the bovine embryos. AAV9 serotype demonstrated minimal effectiveness (38,10%) as the genetic material transfer tool. Four other serotypes of AAVs (AAV1, AAV2, AAV6 and AAV-DJ) showed very close transduction efficiency (52,94-58,33%). CD209 is a C-type lectin receptor which is presented on the surface of macrophages and dendritic cells. CD209 recognizes a broad range of pathogens in a rather nonspecific manner. Production of CD209 knock-out is relevant for better understanding of infection mechanisms. Potentially, production of such knock-out may enable animals to become resistant to various infections. We have analyzed DNA samples from 22 blastocysts obtained after in vitro culture of zygotes subjected to recombinant AAV action. We have detected that 3 of 22 analyzed blastocysts contained mosaic CD209 frameshifts. Therefore, we have demonstrated proof of principle that application of AAV as a genome editing tool is an effective method for obtaining genetically modified cattle embryos.
Collapse
Affiliation(s)
- Anna S Krivonogova
- Ural Federal Agrarian Research Center of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Valeria A Makutina
- Ural Federal Agrarian Research Center of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Yuliya D Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Leonid A Ilchuk
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Marina V Kubekina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexandra Yu Khamatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Tatiana V Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia; Marlin Biotech LLC, Sochi, 354340, Russia
| | - Vladimir S Mymrin
- Ural Federal Agrarian Research Center of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Yuliya Yu Silaeva
- Core Facility Center, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexey V Deykin
- Ural Federal Agrarian Research Center of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Maxim A Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Albina G Isaeva
- Ural Federal Agrarian Research Center of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| |
Collapse
|
2
|
Disulphide-less crotamine is effective for formation of DNA-peptide complex but is unable to improve bovine embryo transfection. ZYGOTE 2019; 28:72-79. [PMID: 31662126 DOI: 10.1017/s0967199419000716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study aimed to investigate the ability of disulphide-less crotamine (dLCr) to complex DNA and to evaluate whether the DNA-dLCr complex is capable of improving transfection in bovine embryos. Three experiments were performed to: (i) evaluate the formation and stability of the DNA-dLCr complex; (ii) assess the dLCr embryotoxicity by exposure of bovine embryos to dLCr; and (iii) assess the efficiency of bovine embryo transfection after microinjection of the DNA-dLCr complex or green fluorescent protein (GFP) plasmid alone (control). DNA complexation by dLCr after 30 min of incubation at 1:100 and 1:50 proportions presented higher efficiency (P < 0.05) than the two controls: native crotamine (NCr) 1:10 and lipofectamine. There was no difference between DNA-dLCr 1:25 and the controls. The DNA-dLCr complexation was evaluated at different proportions and times. In all, at least half of maximum complexation was achieved within the initial 30 min. No embryotoxicity of dLCr was verified after exposure of in vitro fertilized embryos to different concentrations of the peptide. The effectiveness of dLCr to improve exogenous gene expression was evaluated by microinjection of the DNA-dLCr complex into in vitro fertilized zygotes, followed by verification of both embryo development and GFP expression. From embryos microinjected with DNA only, 4.6% and 2.8% expressed the GFP transgene at day 5 and day 7, respectively. The DNA-dLCr complex did not increase the number of GFP-positive embryos. In conclusion, dLCr forms a complex with DNA and its application in in vitro culture is possible. However, the dLCr peptide sequence should be redesigned to improve GFP expression.
Collapse
|
3
|
Landel C, Pritchett-Corning KR. Gene Editing Technologies and Use of Recombinant/Synthetic Nucleic Acids in Laboratory Animals. APPLIED BIOSAFETY 2018. [DOI: 10.1177/1535676018797353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Kwon MS, Koo BC, Kim D, Nam YH, Cui XS, Kim NH, Kim T. Generation of transgenic chickens expressing the human erythropoietin (hEPO) gene in an oviduct-specific manner: Production of transgenic chicken eggs containing human erythropoietin in egg whites. PLoS One 2018; 13:e0194721. [PMID: 29847554 PMCID: PMC5976184 DOI: 10.1371/journal.pone.0194721] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/08/2018] [Indexed: 11/19/2022] Open
Abstract
The transgenic chicken has been considered as a prospective bioreactor for large-scale production of costly pharmaceutical proteins. In the present study, we report successful generation of transgenic hens that lay eggs containing a high concentration of human erythropoietin (hEPO) in the ovalbumin. Using a feline immunodeficiency virus (FIV)-based pseudotyped lentivirus vector enveloped with G glycoproteins of the vesicular stomatitis virus, the replication-defective vector virus carrying the hEPO gene under the control of the chicken ovalbumin promoter was microinjected to the subgerminal cavity of freshly laid chicken eggs (stage X). Stable germline transmission of the hEPO transgene to the G1 progeny, which were non-mosaic and hemizygous for the hEPO gene under the ovalbumin promoter, was confirmed by mating of a G0 rooster with non-transgenic hens. Quantitative analysis of hEPO in the egg whites and in the blood samples taken from G1 transgenic chickens showed 4,810 ~ 6,600 IU/ml (40.1 ~ 55.0 μg/ml) and almost no detectable concentration, respectively, indicating tightly regulated oviduct-specific expression of the hEPO transgene. In terms of biological activity, there was no difference between the recombinant hEPO contained in the transgenic egg white and the commercially available counterpart, in vitro. We suggest that these results imply an important step toward efficient production of human cytokines from a transgenic animal bioreactor.
Collapse
Affiliation(s)
- Mo Sun Kwon
- Department of Physiology, Daegu, Republic of Korea
| | - Bon Chul Koo
- Department of Physiology, Daegu, Republic of Korea
| | - Dohyang Kim
- Department of Physiology, Daegu, Republic of Korea
| | - Yu Hwa Nam
- Department of Physiology, Daegu, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Teoan Kim
- Department of Physiology, Daegu, Republic of Korea
- * E-mail:
| |
Collapse
|
5
|
Yum SY, Youn KY, Choi WJ, Jang G. Development of genome engineering technologies in cattle: from random to specific. J Anim Sci Biotechnol 2018; 9:16. [PMID: 29423215 PMCID: PMC5789629 DOI: 10.1186/s40104-018-0232-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
The production of transgenic farm animals (e.g., cattle) via genome engineering for the gain or loss of gene functions is an important undertaking. In the initial stages of genome engineering, DNA micro-injection into one-cell stage embryos (zygotes) followed by embryo transfer into a recipient was performed because of the ease of the procedure. However, as this approach resulted in severe mosaicism and has a low efficiency, it is not typically employed in the cattle as priority, unlike in mice. To overcome the above issue with micro-injection in cattle, somatic cell nuclear transfer (SCNT) was introduced and successfully used to produce cloned livestock. The application of SCNT for the production of transgenic livestock represents a significant advancement, but its development speed is relatively slow because of abnormal reprogramming and low gene targeting efficiency. Recent genome editing technologies (e.g., ZFN, TALEN, and CRISPR-Cas9) have been rapidly adapted for applications in cattle and great results have been achieved in several fields such as disease models and bioreactors. In the future, genome engineering technologies will accelerate our understanding of genetic traits in bovine and will be readily adapted for bio-medical applications in cattle.
Collapse
Affiliation(s)
- Soo-Young Yum
- 1Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea
| | - Ki-Young Youn
- 1Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea
| | - Woo-Jae Choi
- 1Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea
| | - Goo Jang
- 1Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea.,2Farm Animal Clinical Training and Research Center, Institute of GreenBio Science Technology, Seoul National University, PyeongChang-Gun, Gangwon-do 25354 Republic of Korea.,3Emergence Center for Food-Medicine Personalized Therapy System, Advanced Institutes of Convergence Technology, Seoul National University, SuWon, Gyeonggi-do 16629 Republic of Korea.,4College of Veterinary Medicine, Seoul National University, #85, Room631, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826 Republic of Korea
| |
Collapse
|
6
|
Production of germline transgenic pigs co-expressing double fluorescent proteins by lentiviral vector. Anim Reprod Sci 2016; 174:11-19. [PMID: 27639503 DOI: 10.1016/j.anireprosci.2016.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 05/11/2016] [Accepted: 05/20/2016] [Indexed: 11/23/2022]
Abstract
Genomic integration of transgene by lentiviral vector has been proved an efficient method to produce single-transgenic animals. But it failed to create multi-gene transgenic offspring. Here, we have exploited lentivirus to generate the double-transgenic piglets through the female germline. The recombinant lentivirus containing fluorescent proteins genes (DsRed1 and Venus) were injected into the perivitelline space of 2-cell stage in vitro porcine embryos. Compared to control group, there was no significantly decreased in the proportion of blastocysts, and the two fluorescent protein genes were co-expressed in almost all the injected embryos. Total of 32 injected in vitro embryos were transferred to 2 recipients. One recipient gave birth of three live offspring, and one female piglet was identified as genomic transgene integration by PCR analysis. Subsequently, the female transgenic founder was mated naturally with a wild-type boar and gave birth of two litters of total 23 F(1) generation piglets, among which Venus and DsRed1 genes were detected in 11 piglets and 10 kinds of organs by PCR and RT-PCR respectively. The co-expression of two fluorescent proteins was visible in four different frozen tissue sections from the RT-PCR positive piglets, and 3 to 5 copies of the transgenes were detected to be integrated into the second generation genome by southern blotting analysis. The transgenes were heritable and stably integrated in the F(1) generation. The results indicated for the first time that lentiviral vector combined with natural mating has the potential to become a simple and practical technology to create germline double-transgenic livestock or biomedical animals.
Collapse
|