1
|
Ren J, Peng C, Chen H, Zhou F, Keqie Y, Li Y, Yang H, Zhang H, Du Z, Hu T, Zhang X, Luo S, Fan W, Wang Y, Wang H, Chen X, Liu S. Asian Screening Array and Next-Generation Sequencing Based Panels Applied to Preimplantation Genetic Testing for Monogenic Disorders Preclinical Workup in 294 Families: A Retrospective Analysis. Prenat Diagn 2024; 44:1344-1353. [PMID: 39072792 DOI: 10.1002/pd.6639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVE Currently, the most commonly used methods for linkage analysis of pre-implantation genetic testing for monogenic disorders (PGT-M) are next generation sequencing (NGS) and SNP array. We aim to investigate whether the application efficacy of Asian screening array (ASA) in PGT-M preclinical workup for the Chinese population is superior to NGS based single nucleotide polymorphism (SNP) panels. METHODS We conducted a retrospective analysis by reviewing 294 couples from a single center over the past 4 years and compared the detection results between NGS-based SNP panels and ASA. Using the numbers of informative SNPs upstream and downstream flanking of variants, we assessed the detection efficiency of both methods in monogenic diseases, chromosomal microdeletion syndrome and males with de novo variants, among other scenarios. RESULTS Results indicate that ASA offers a greater number of informative SNPs compared with NGS-based SNP panels. Additionally, data analysis for ASA is generally more straightforward and may require less computational resources. While ASA can address most PGT-M challenges, we have also identified certain genes in previous tests that are not suitable for PGT-M using ASA. CONCLUSION The application of ASA in PGT-M preclinical workup for Chinese populations has good practical value as it can perform linkage analysis for most genetic variants. However, for certain variants, NGS or other testing methods, such as mutated allele revealed by sequencing with aneuploidy and linkage analysis (MARSALA), may still be necessary for completion.
Collapse
Affiliation(s)
- Jun Ren
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Cuiting Peng
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Han Chen
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Fan Zhou
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuezhi Keqie
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yutong Li
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Hong Yang
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Haixia Zhang
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ze Du
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ting Hu
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xuemei Zhang
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shan Luo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wei Fan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| | - He Wang
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xinlian Chen
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Shanling Liu
- Department of Medical Genetics, Center for Prenatal Diagnosis, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
2
|
Lan Y, Zhou H, He S, Shu J, Liang L, Wei H, Luo J, Wang C, Zhao X, Qiu Q, Huang P. Appropriate whole genome amplification and pathogenic loci detection can improve the accuracy of preimplantation genetic diagnosis for deletional α-thalassemia. Front Endocrinol (Lausanne) 2024; 14:1176063. [PMID: 38523870 PMCID: PMC10957767 DOI: 10.3389/fendo.2023.1176063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 11/13/2023] [Indexed: 03/26/2024] Open
Abstract
Objective To improve the accuracy of preimplantation genetic testing (PGT) in deletional α-thalassemia patients. Design Article. Patients fifty-two deletional α-thalassemia couples. Interventions Whole genome amplification (WGA), Next-generation sequencing (NGS) and PCR mutation loci detection. Main outcome measures WGA, Single nucleotide polymorphism (SNP) and PCR mutation loci detection results; Analysis of embryo chromosome copy number variation (CNV). Results Multiple Displacement Amplification (MDA) and Multiple Annealing and Looping-Based Amplification Cycles (MALBAC) methods for PGT for deletional α-thalassemia. Blastocyst biopsy samples (n = 253) were obtained from 52 deletional α-thalassemia couples. The results of the comparison of experimental data between groups MALBAC and MDA are as follows: (i) The average allele drop-out (ADO) rate, MALBAC vs. MDA = 2.27% ± 3.57% vs. 0.97% ± 1.4%, P=0.451); (ii) WGA success rate, MALBAC vs. MDA = 98.61% vs. 98.89%, P=0.851; (iii) SNP haplotype success rate, MALBAC vs. MDA = 94.44% vs. 96.68%, P=0.409; (iv) The result of SNP haplotype analysis is consistent with that of Gap-PCR/Sanger sequencing results, MALBAC vs. MDA = 36(36/72, 50%) vs. 151(151/181, 83.43%), P=0; (v) Valid SNP loci, MALBAC vs. MDA = 30 ± 9 vs. 34 ± 10, P=0.02; (vi) The mean CV values, MALBAC vs. MDA = 0.12 ± 0.263 vs. 0.09 ± 0.40, P=0.916; (vii) The average number of raw reads, MALBAC vs. MDA =3244259 ± 999124 vs. 3713146 ± 1028721, P=0; (viii) The coverage of genome (%), MALBAC vs. MDA = 5.02 ± 1.09 vs. 5.55 ± 1.49, P=0.008. Conclusions Our findings indicate that MDA is superior to MALBAC for PGT of deletional α-thalassemia. Furthermore, SNP haplotype analysis combined with PCR loci detection can improve the accuracy and detection rate of deletional α-thalassemia.
Collapse
Affiliation(s)
- Yueyun Lan
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
- Genetic and Metabolic Central Laboratory of Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Hong Zhou
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
| | - Sheng He
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
- Genetic and Metabolic Central Laboratory of Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Nanning, China
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Nanning, China
| | - Jinhui Shu
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
| | - Lifang Liang
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Nanning, China
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Nanning, China
| | - Hongwei Wei
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
- Genetic and Metabolic Central Laboratory of Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Nanning, China
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Nanning, China
| | - Jingsi Luo
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
- Genetic and Metabolic Central Laboratory of Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Caizhu Wang
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
| | - Xin Zhao
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
| | - Qingming Qiu
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
- Genetic and Metabolic Central Laboratory of Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Nanning, China
| | - Peng Huang
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Reproductive Health and Birth Defect Prevention, Nanning, China
- Genetic and Metabolic Central Laboratory of Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Nanning, China
| |
Collapse
|
3
|
Gupta P, Arvinden VR, Thakur P, Bhoyar RC, Saravanakumar V, Gottumukkala NV, Goswami SG, Nafiz M, Iyer AR, Vignesh H, Soni R, Bhargava N, Gunda P, Jain S, Gupta V, Sivasubbu S, Scaria V, Ramalingam S. Scalable noninvasive amplicon-based precision sequencing (SNAPseq) for genetic diagnosis and screening of β-thalassemia and sickle cell disease using a next-generation sequencing platform. Front Mol Biosci 2023; 10:1244244. [PMID: 38152111 PMCID: PMC10751313 DOI: 10.3389/fmolb.2023.1244244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023] Open
Abstract
β-hemoglobinopathies such as β-thalassemia (BT) and Sickle cell disease (SCD) are inherited monogenic blood disorders with significant global burden. Hence, early and affordable diagnosis can alleviate morbidity and reduce mortality given the lack of effective cure. Currently, Sanger sequencing is considered to be the gold standard genetic test for BT and SCD, but it has a very low throughput requiring multiple amplicons and more sequencing reactions to cover the entire HBB gene. To address this, we have demonstrated an extraction-free single amplicon-based approach for screening the entire β-globin gene with clinical samples using Scalable noninvasive amplicon-based precision sequencing (SNAPseq) assay catalyzing with next-generation sequencing (NGS). We optimized the assay using noninvasive buccal swab samples and simple finger prick blood for direct amplification with crude lysates. SNAPseq demonstrates high sensitivity and specificity, having a 100% agreement with Sanger sequencing. Furthermore, to facilitate seamless reporting, we have created a much simpler automated pipeline with comprehensive resources for pathogenic mutations in BT and SCD through data integration after systematic classification of variants according to ACMG and AMP guidelines. To the best of our knowledge, this is the first report of the NGS-based high throughput SNAPseq approach for the detection of both BT and SCD in a single assay with high sensitivity in an automated pipeline.
Collapse
Affiliation(s)
- Pragya Gupta
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - V. R. Arvinden
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priya Thakur
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rahul C. Bhoyar
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
| | | | | | - Sangam Giri Goswami
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mehwish Nafiz
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aditya Ramdas Iyer
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Harie Vignesh
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
| | - Rajat Soni
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
| | - Nupur Bhargava
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
| | - Padma Gunda
- Thalassemia and Sickle Cell Society, Hyderabad, India
| | - Suman Jain
- Thalassemia and Sickle Cell Society, Hyderabad, India
| | - Vivek Gupta
- Government Institute of Medical Sciences (GIMS), Greater Noida, India
| | - Sridhar Sivasubbu
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vinod Scaria
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sivaprakash Ramalingam
- CSIR- Institute for Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Yan L, Cao Y, Chen ZJ, Du J, Wang S, Huang H, Huang J, Li R, Liu P, Zhang Z, Huang Y, Lin G, Pan H, Qi H, Qian W, Sun Y, Wu L, Yao Y, Zhang B, Zhang C, Zhao S, Zhou C, Zhang X, Qiao J. Chinese experts' consensus guideline on preimplantation genetic testing of monogenic disorders. Hum Reprod 2023; 38:ii3-ii13. [PMID: 37982416 DOI: 10.1093/humrep/dead112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/06/2023] [Indexed: 11/21/2023] Open
Abstract
Recent developments in molecular biological technologies and genetic diagnostic methods, accompanying with updates of relevant terminologies, have enabled the improvements of new strategies of preimplantation genetic testing for monogenic (single gene) disorders (PGT-M) to prevent the transmission of inherited diseases. However, there has been much in the way of published consensus on PGT-M. To properly regulate the application of PGT-M, Chinese experts in reproductive medicine and genetics have jointly developed this consensus statement. The consensus includes indications for patient selection, genetic and reproductive counseling, informed consent, diagnostic strategies, report generation, interpretation of results and patient follow-ups. This consensus statement serves to assist in establishment of evidence-based clinical and laboratory practices for PGT-M.
Collapse
Affiliation(s)
- Liying Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yunxia Cao
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zi-Jiang Chen
- Hospital for Reproductive Medicine Affiliated to Shandong University, Jinan, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - ShuYu Wang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Hefeng Huang
- Obstetrics & Gynecology Hospital of Fudan University, Shanghai, China
| | - Jin Huang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Rong Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Ping Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Zhe Zhang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yu Huang
- Peking University Health Science Center, Beijing, China
| | - Ge Lin
- Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Hong Pan
- Peking University First Hospital, Beijing, China
| | - Hongbo Qi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiping Qian
- Peking University Shenzhen Hospital, Shenzhen, China
| | - Yun Sun
- Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lingqian Wu
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yuanqing Yao
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Bo Zhang
- Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, China
| | | | - Shuyun Zhao
- Hospital Affiliated to Guizhou Medical University, Guiyang, China
| | - Canquan Zhou
- The First Affiliated Hospital, Sun Yat-sen Univeristy, Guangzhou, China
| | - Xue Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
5
|
Liu Y, Ren Y, Feng H, Wang Y, Yan L, Qiao J, Liu P. Development of preimplantation genetic testing for monogenic diseases in China. HUM FERTIL 2023; 26:879-886. [PMID: 38059330 DOI: 10.1080/14647273.2023.2284153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
Preimplantation genetic testing for monogenic diseases (PGT-M) can effectively interrupt the transmission of genetic diseases from parents to the offspring before pregnancy. In China, there are over ten million individuals afflicted with monogenic disorders. This literature review summarizes the development of PGT-M in China for the past 24 years, covering the general steps such as the indications and contraindications, genetic and reproductive counselling, biopsy methods, detecting techniques and strategies during PGT-M application in China. The ethical considerations of PGT-M are also be emphasized, including sexual selection, transferring for mosaic embryos, the three-parent baby, and the different opinions for serious adult-onset conditions. Some key policies of the Chinese government for the application of PGT-M are also considered. Methods for regulation of this technique, as well as specific management to increase the accuracy and reliability of PGT-M, are regarded as priority issues in China. The third-generation sequencing and variants testing from RNA level, and non-invasive preimplantation genetic testing using blastocoel fluid and free DNA particles within spent blastocyst medium might be potential techniques and strategies for PGT-M in future.
Collapse
Affiliation(s)
- Yujun Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, P. R. China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, P. R. China
| | - Yixin Ren
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, P. R. China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, P. R. China
| | - Hao Feng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
| | - Yuqian Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, P. R. China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, P. R. China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, P. R. China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, P. R. China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, P. R. China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, P. R. China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, P. R. China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, P. R. China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, P. R. China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, P. R. China
| |
Collapse
|
6
|
Chen D, Xu Y, Fu Y, Wang Y, Liu Y, Ding C, Cai B, Pan J, Wang J, Li R, Guo J, Zhang H, Zeng Y, Shen X, Zhou C. Clinical application of next generation sequencing-based haplotype linkage analysis in the preimplantation genetic testing for germline mosaicisms. Orphanet J Rare Dis 2023; 18:137. [PMID: 37270548 DOI: 10.1186/s13023-023-02736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/18/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Preimplantation genetic testing (PGT) for monogenic disorders (PGT-M) for germline mosaicism was previously highly dependent on polymerase chain reaction (PCR)-based directed mutation detection combined with linkage analysis of short tandem repeats (STRs). However, the number of STRs is usually limited. In addition, designing suitable probes and optimizing the reaction conditions for multiplex PCR are time-consuming and laborious. Here, we evaluated the effectiveness of next generation sequencing (NGS)-based haplotype linkage analysis in PGT of germline mosaicism. METHODS PGT-M with NGS-based haplotype linkage analysis was performed for two families with maternal germline mosaicism for an X-linked Duchenne muscular dystrophy (DMD) mutation (del exon 45-50) or an autosomal TSC1 mutation (c.2074C > T). Trophectoderm biopsy and multiple displacement amplification (MDA) were performed for a total of nine blastocysts. NGS and Sanger sequencing were performed in genomic DNA of family members and embryonic MDA products to detect DMD deletion and TSC1 mutation, respectively. Single nucleotide polymorphism (SNP) sites closely linked to pathogenic mutations were detected with NGS and served in haplotype linkage analysis. NGS-based aneuploidy screening was performed for all embryos to reduce the risk of pregnancy loss. RESULTS All nine blastocytes showed conclusive PGT results. Each family underwent one or two frozen-thawed embryo transfer cycles to obtain a clinical pregnancy, and the prenatal diagnosis showed that the fetus was genotypically normal and euploid for both families. CONCLUSIONS NGS-SNP could effectively realize PGT for germline mosaicism. Compared with PCR-based methods, the NGS-SNP method with increased polymorphic informative markers can achieve a greater diagnostic accuracy. Further studies are warranted to verify the effectiveness of NGS-based PGT of germline mosaicism cases in the absence of surviving offsprings.
Collapse
Affiliation(s)
- Dongjia Chen
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Yan Xu
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Yu Fu
- The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 570102, China
| | - Yali Wang
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Yuliang Liu
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Chenhui Ding
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Bing Cai
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Jiafu Pan
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Jing Wang
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Rong Li
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Jing Guo
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Han Zhang
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Yanhong Zeng
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China
| | - Xiaoting Shen
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China.
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Canquan Zhou
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, China.
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Liu Y, Zhi X. Advances in Genetic Diagnosis of Kallmann Syndrome and Genetic Interruption. Reprod Sci 2022; 29:1697-1709. [PMID: 34231173 PMCID: PMC9110439 DOI: 10.1007/s43032-021-00638-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022]
Abstract
Kallmann syndrome (KS) is a rare hereditary disease with high phenotypic and genetic heterogeneity. Congenital hypogonadotropic hypogonadism and hyposmia/anosmia are the two major characterized phenotypes of KS. Besides, mirror movements, dental agenesis, digital bone abnormalities, unilateral renal agenesis, midline facial defects, hearing loss, and eye movement abnormalities can also be observed in KS patients. Because of the phenotypic heterogeneity, genetic diagnosis become increasingly valuable to distinguish KS from other disorders including normosmic congenital hypogonadotropic hypogonadism, constitutional delay of growth and puberty, CHARGE syndrome, and functional hypogonadotropic hypogonadism. Application of next-generation sequencing has promoted the discovery of novel pathogenic genes in KS pedigrees. Prenatal diagnosis is an effective method in clinical settings to decrease birth defects and block transmission of genetic disorders. However, pregnant women may suffer from physical and psychological distress when fetuses are diagnosed with congenital defects. Preimplantation genetic testing (PGT) is a prospective approach during the in vitro fertilization process that helps to interrupt transmission of hereditary diseases to offspring at an early stage. Thus, genetic testing and counseling are recommended to KS patients with family histories, prenatal diagnosis and PGT are considered to be useful options.
Collapse
Affiliation(s)
- Yujun Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University, Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xu Zhi
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University, Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
8
|
Ou Z, Deng Y, Liang Y, Chen Z, Sun L. Using affected embryos to establish linkage phase in preimplantation genetic testing for thalassemia. Reprod Biol Endocrinol 2022; 20:75. [PMID: 35490243 PMCID: PMC9055750 DOI: 10.1186/s12958-022-00948-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND This study aimed to evaluate the ability of next-generation sequencing (NGS) to conduct preimplantation genetic testing (PGT) for thalassemia using affected embryos. METHODS This study included data from 36 couples who underwent PGT for thalassemia without probands and relative pedigrees. NGS results were compared with prenatal diagnosis results. RESULTS Thirty-six couples (29 α-thalassemia and 7 β-thalassemia) underwent 41 PGT cycles (31 α-thalassemia and 10 β-thalassemia). Analysis using NGS produced conclusive results for all biopsied blastocysts (100%, 217/217). One hundred and sixty (73.7%, 160/217) were unaffected by thalassemia. Preimplantation genetic testing for aneuploidy revealed that 112 (70.0%, 112/160) were euploid. Single blastocysts were transferred into the uteri of 34 women (53 frozen embryo transfer [FET] cycles). Thirty-two cycles resulted in clinical pregnancies, with a clinical pregnancy rate of 60.1% (32/53) per FET cycle. Twenty-two cycles (22 couples) resulted in 23 live births, with a live birth rate of 43.4% (23/53; 3 cycles were ongoing pregnancies). All 25 embryos' prenatal diagnosis results and/or thalassemia gene analyses after delivery were concordant with the NGS-PGT results. Seven embryos (21.9%, 7/32) were miscarried before 12 weeks' gestation, and the abortion villus in four showed a normal karyotype and thalassemia results consistent with the NGS-PGT results. Aborted fetus samples from 3 cycles were not available because the pregnancy lasted less than 5 weeks. CONCLUSION NGS can be used to conduct PGT for thalassemia using affected embryos as a reference. TRIAL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
- Zhanhui Ou
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yu Deng
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yunhao Liang
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Zhiheng Chen
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Ling Sun
- Center of Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
9
|
Huang C, Zheng B, Chen L, Diao Z, Zhou J. The clinical application of single-sperm-based single-nucleotide polymorphism haplotyping for PGT of patients with genetic diseases. Reprod Biomed Online 2021; 44:63-71. [PMID: 34862136 DOI: 10.1016/j.rbmo.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/10/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
RESEARCH QUESTION Is there a simple and effective method for male patients with genetic disorders in families with no identified haplotype and with Robertsonian translocations to avoid the transfer of embryos carrying translocated chromosomes? DESIGN Single spermatozoa were separated to identify by next-generation sequencing (NGS) those that were genetically abnormal, to establish a sperm-based single-nucleotide polymorphism (SNP) haplotype. Blastocysts that developed to day 5 or 6 were then biopsied for whole genome amplification and screening for chromosomal aneuploidy. Normal embryos were selected by comparison with a single-sperm-based SNP haplotype and were transferred. The results were verified by second trimester amniocentesis. RESULTS Two blastocysts obtained from patients with neurofibroma type 1 (NF1) were found to be normal after NGS according to single-sperm-based SNP haplotype analysis (13 SNP sites). Three and one blastocysts, respectively, were obtained from the patients with Robertsonian translocation. Blastocysts B9 and B7 were found to be normal after NGS according to the single-sperm-based SNP haplotype analysis (12 and 13 SNP sites selected on chromosomes 14 and 22 for the first patient; 12 and 9 SNP sites selected on chromosomes 13 and 14 for the second patient). Successful pregnancies after blastocyst transfer occurred in all three patients. The identification of embryos was verified by mid-trimester amniocentesis. All three patient couples successfully delivered healthy babies. CONCLUSION This study preliminarily summarized the process of single-sperm-based SNP haplotyping, which could be applied as preimplantation genetic testing for male patients without identified disease-causing haplotypes and with Robertsonian translocations.
Collapse
Affiliation(s)
- Chenyang Huang
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
| | - Bo Zheng
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
| | - Linjun Chen
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
| | - Zhenyu Diao
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
| | - Jianjun Zhou
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
10
|
Next-Generation Sequencing-Based Preimplantation Genetic Testing for De Novo NF1 Mutations. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00006-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Novel PGD strategy based on single sperm linkage analysis for carriers of single gene pathogenic variant and chromosome reciprocal translocation. J Assist Reprod Genet 2020; 37:1239-1250. [PMID: 32350783 DOI: 10.1007/s10815-020-01753-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/17/2020] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Preimplantation genetic diagnosis (PGD) analysis can be challenging for couples who carry more than one genetic condition. In this study, we describe a new PGD strategy to select which embryo(s) to transfer for two clinically challenging cases. Both cases lack essential family members for linkage analysis including de novo mutation combined with reciprocal translocation. METHODS Diverging from conventional method, we performed direct point mutation detection, quantitative analysis of gene copy number, combined with linkage analysis assisted by SNP information from single sperm (or polar bodies), thus establishing an all-in-one protocol for single embryonic cell preimplantation diagnosis for two co-existing genetic conditions (monogenic disease and chromosomal abnormality) on the NGS-based platform. RESULTS Using this newly developed method, 15 embryos from two cases were screened, and two embryos were determined as free of the monogenic disease and specific chromosomal abnormalities created by the prospective father's reciprocal translocations. CONCLUSION This novel PGD strategy could effectively select unaffected embryo(s) for couples affected with or carrying a monogenetic disease and a reciprocal chromosome translocation concurrently.
Collapse
|
12
|
Chen D, Shen X, Wu C, Xu Y, Ding C, Zhang G, Xu Y, Zhou C. Eleven healthy live births: a result of simultaneous preimplantation genetic testing of α- and β-double thalassemia and aneuploidy screening. J Assist Reprod Genet 2020; 37:549-557. [PMID: 32152910 DOI: 10.1007/s10815-020-01732-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/28/2020] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To evaluate the efficacy of preimplantation genetic testing (PGT) for α- and β-double thalassemia combined with aneuploidy screening using next-generation sequencing (NGS). METHODS An NGS-based PGT protocol was performed between 2017 and 2018 for twelve couples, each of which carried both α- and β-thalassemia mutations. Trophectoderm biopsy samples underwent whole-genome amplification using multiple displacement amplification (MDA), followed by NGS for thalassemia detection and aneuploidy screening. A selection of several informative single nucleotide polymorphisms (SNPs) established haplotypes. Aneuploidy screening was performed only on unaffected noncarriers and carriers. Unaffected and euploid embryos were transferred into the uterus through frozen-thawed embryo transfer (FET). RESULTS A total of 280 oocytes were retrieved following 18 ovum pick-up (OPU) cycles, with 182 normally fertilized and 112 cultured to become blastocysts. One hundred and seven (95.5%, 107/112) blastocysts received conclusive PGT results, showing 56 (52.3%, 56/107) were unaffected. Thirty-seven (66.1%, 37/56) of the unaffected were also identified as euploid. One family had no transferable embryos. Unaffected and euploid embryos were then transferred into the uterus of the other 11 couples resulting in 11 healthy live births. The clinical pregnancy rate was 61.1% (11/18) per OPU and 68.8% (11/16) per FET, with no miscarriage reported. Seven families accepted the prenatal diagnosis and received consistent results with the NGS-based PGT. CONCLUSION This study indicated that NGS could realize the simultaneous PGT of double thalassemia and aneuploidy screening in a reliable and accurate manner. Moreover, it eliminated the need for multiple biopsies, alleviating the potential damages to the pre-implanted blastocysts.
Collapse
Affiliation(s)
- Dongjia Chen
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, Guangdong, China
| | - Xiaoting Shen
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, Guangdong, China
| | - Changsheng Wu
- Peking Medriv Academy of Genetics and Reproduction, Peking, 102629, China
| | - Yan Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, Guangdong, China
| | - Chenhui Ding
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, Guangdong, China
| | - Guirong Zhang
- Peking Medriv Academy of Genetics and Reproduction, Peking, 102629, China.
| | - Yanwen Xu
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China. .,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, Guangdong, China.
| | - Canquan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China. .,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
13
|
Hao Y, Chen D, Zhang G, Zhang Z, Liu X, Zhou P, Wei Z, Xu X, He X, Xing L, Lv M, Ji D, Chen B, Zou W, Wu H, Liu Y, Cao Y. Successful clinical application of pre-implantation genetic diagnosis for infantile neuroaxonal dystrophy. Exp Ther Med 2019; 19:956-964. [PMID: 32010257 PMCID: PMC6966177 DOI: 10.3892/etm.2019.8302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 07/30/2019] [Indexed: 11/28/2022] Open
Abstract
Infantile neuroaxonal dystrophy (INAD) is a rare, lethal, autosomal recessive neurodegenerative disease and leads to progressive impairment of movement and cognition. A couple with a proband child with calcium-independent group VI phospholipase A2 (PLA2G6)-associated INAD and a previous affected pregnancy sought pre-implantation genetic diagnosis (PGD) to bear a healthy child. Intracytoplasmic sperm injection treatment was performed and 15 blastocystic embryos were obtained at days 5 and 6, and these biopsies were amplified. PGD was performed by next-generation sequencing-based linkage analysis in conjunction with aneuploidy screening. Only two embryos were considered for transfer. In the second frozen-thawed embryo transfer cycle, transfer of a mosaic PLA2G6 c.692G>T heterozygous embryo resulted in a singleton ongoing pregnancy. Prenatal diagnosis was performed using amniotic fluid cells, providing results consistent with those of PGD. The aneuploidy screen and karyotype analysis indicated that the chromosomes of the fetus were normal without any mosaicism. The present study reported the first successful PGD for INAD. For parents at risk, this strategy may successfully lead to pregnancies with embryos unlikely to develop INAD, thus providing valuable experience in reproductive management regarding INAD and potentially other single-gene disorders.
Collapse
Affiliation(s)
- Yan Hao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Department of Biopreservation, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, P.R. China
| | - Dawei Chen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Department of Biopreservation, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, P.R. China
| | - Guirong Zhang
- Department of Genetics, Peking Medriv Academy of Genetics and Reproduction, Beijing 102629, P.R. China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Department of Biopreservation, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, P.R. China
| | - Xiaojun Liu
- Department of Genetics, Peking Medriv Academy of Genetics and Reproduction, Beijing 102629, P.R. China
| | - Ping Zhou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Department of Biopreservation, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, P.R. China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Department of Biopreservation, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, P.R. China
| | - Xiaofeng Xu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Department of Biopreservation, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, P.R. China
| | - Xiaojin He
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Department of Biopreservation, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, P.R. China
| | - Lixian Xing
- Department of Genetics, Peking Medriv Academy of Genetics and Reproduction, Beijing 102629, P.R. China
| | - Mingrong Lv
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Department of Biopreservation, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, P.R. China
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Department of Biopreservation, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, P.R. China
| | - Beili Chen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Department of Biopreservation, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, P.R. China
| | - Weiwei Zou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Department of Biopreservation, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, P.R. China
| | - Huan Wu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Department of Biopreservation, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, P.R. China
| | - Yajing Liu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Department of Biopreservation, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, P.R. China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, Anhui Medical University, Hefei, Anhui 230032, P.R. China.,Department of Biopreservation, Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, P.R. China
| |
Collapse
|
14
|
Xiong L, Huang L, Tian F, Lu S, Xie XS. Bayesian model for accurate MARSALA (mutated allele revealed by sequencing with aneuploidy and linkage analyses). J Assist Reprod Genet 2019; 36:1263-1271. [PMID: 31187331 PMCID: PMC6602990 DOI: 10.1007/s10815-019-01451-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 04/09/2019] [Indexed: 11/28/2022] Open
Abstract
Purpose This study is aimed at increasing the accuracy of preimplantation genetic test for monogenic defects (PGT-M). Methods We applied Bayesian statistics to optimize data analyses of the mutated allele revealed by sequencing with aneuploidy and linkage analyses (MARSALA) method for PGT-M. In doing so, we developed a Bayesian algorithm for linkage analyses incorporating PCR SNV detection with genome sequencing around the known mutation sites in order to determine quantitatively the probabilities of having the disease-carrying alleles from parents with monogenic diseases. Both recombination events and sequencing errors were taken into account in calculating the probability. Results Data of 28 in vitro fertilized embryos from three couples were retrieved from two published research articles by Yan et al. (Proc Natl Acad Sci. 112:15964–9, 2015) and Wilton et al. (Hum Reprod. 24:1221–8, 2009). We found the embryos deemed “normal” and selected for transfer in the previous publications were actually different in error probability of 10−4–4%. Notably, our Bayesian model reduced the error probability to 10−6–10−4%. Furthermore, a proband sample is no longer required by our new method, given a minimum of four embryos or sperm cells. Conclusion The error probability of PGT-M can be significantly reduced by using the Bayesian statistics approach, increasing the accuracy of selecting healthy embryos for transfer with or without a proband sample. Electronic supplementary material The online version of this article (10.1007/s10815-019-01451-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luoxing Xiong
- Peking-Tsinghua Center for Life Sciences (CLS), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.,Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China
| | - Lei Huang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 01238, USA
| | - Feng Tian
- Peking-Tsinghua Center for Life Sciences (CLS), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.,Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China
| | - Sijia Lu
- Yikon Genomics Co., Ltd., 1698 Wangyuan Road, Building #26, Fengxian District, Shanghai, 201400, China
| | - Xiaoliang Sunney Xie
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China. .,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 01238, USA.
| |
Collapse
|
15
|
Profile of Dr. Jie Qiao. SCIENCE CHINA-LIFE SCIENCES 2019; 62:883-885. [PMID: 31152390 DOI: 10.1007/s11427-019-9561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Genetic analysis and preimplantation genetic diagnosis of Chinese Marfan syndrome patients. J Genet Genomics 2019; 46:319-323. [PMID: 31279624 DOI: 10.1016/j.jgg.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/21/2019] [Accepted: 04/27/2019] [Indexed: 01/06/2023]
|
17
|
Preimplantation Genetic Testing of Achondroplasia by Two Haplotyping Systems: Short Tandem Repeats and Single Nucleotide Polymorphism. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-018-3207-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Liao CH, Chang MY, Ma GC, Chang SP, Lin CF, Lin WH, Chen HF, Chen SU, Lee YC, Chao CC, Chen M, Hsieh ST. Preimplantation Genetic Diagnosis of Neurodegenerative Diseases: Review of Methodologies and Report of Our Experience as a Regional Reference Laboratory. Diagnostics (Basel) 2019; 9:E44. [PMID: 31018485 PMCID: PMC6627755 DOI: 10.3390/diagnostics9020044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/02/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
Preimplantation genetic diagnosis (PGD) has become a crucial approach in helping carriers of inherited disorders to give birth to healthy offspring. In this study, we review PGD methodologies and explore the use of amplification refractory mutation system quantitative polymerase chain reaction (ARMS-qPCR) and/or linkage analysis for PGD in neurodegenerative diseases that are clinically relevant with typical features, such as late onset, and which are severely debilitating. A total of 13 oocyte retrieval cycles were conducted in 10 cases with various neurodegenerative diseases. Among the 59 embryos analyzed, 49.2% (29/59) were unaffected and 50.8% (30/59) were affected. Of the 12 embryo transfer cycles, three resulted in pregnancy, and all pregnancies were delivered. The implantation rate and livebirth rate were 23.1% (3/13) per oocyte retrieval cycle and 25.0% (3/12) per embryo transfer cycle. Allele dropout (ADO) was noted in two embryos that were classified as unaffected by ARMS-qPCR but were evidenced as affected after prenatal diagnosis, rendering the false negative rate as 6.3% (2/32). Four among the 13 cycles underwent PGD by ARMS-qPCR coupled with linkage analysis, and all were correctly diagnosed. We conclude that PGD by ARMS-qPCR and/or linkage analysis is a feasible strategy, whereas ADO is a concern when ARMS-qPCR is used as the sole technology in PGD, especially in autosomal dominant diseases.
Collapse
Affiliation(s)
- Chun-Hua Liao
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei 10041, Taiwan.
| | - Ming-Yuh Chang
- Division of Pediatric Neurology, Department of Pediatrics, Changhua Christian Children's Hospital, Changhua 50050, Taiwan.
| | - Gwo-Chin Ma
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan.
- Department of Genomic Science and Technology, Changhua Christian Hospital Healthcare System, Changhua Christian Hospital, Changhua 50046, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan.
| | - Shun-Ping Chang
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan.
- Department of Genomic Science and Technology, Changhua Christian Hospital Healthcare System, Changhua Christian Hospital, Changhua 50046, Taiwan.
| | - Chi-Fang Lin
- Department of Obstetrics and Gynecology, College of Medicine and Hospital, National Taiwan University, Taipei 10041, Taiwan.
| | - Wen-Hsiang Lin
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan.
- Department of Genomic Science and Technology, Changhua Christian Hospital Healthcare System, Changhua Christian Hospital, Changhua 50046, Taiwan.
| | - Hsin-Fu Chen
- Department of Obstetrics and Gynecology, College of Medicine and Hospital, National Taiwan University, Taipei 10041, Taiwan.
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| | - Shee-Uan Chen
- Department of Obstetrics and Gynecology, College of Medicine and Hospital, National Taiwan University, Taipei 10041, Taiwan.
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Chi-Chao Chao
- Department of Neurology, National Taiwan University Hospital, Taipei 10048, Taiwan.
| | - Ming Chen
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, Changhua 50046, Taiwan.
- Department of Genomic Science and Technology, Changhua Christian Hospital Healthcare System, Changhua Christian Hospital, Changhua 50046, Taiwan.
- Department of Obstetrics and Gynecology, College of Medicine and Hospital, National Taiwan University, Taipei 10041, Taiwan.
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan.
- Department of Molecular Biotechnology, Da-Yeh University, Changhua 51591, Taiwan.
| | - Sung-Tsang Hsieh
- Department of Neurology, National Taiwan University Hospital, Taipei 10048, Taiwan.
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
19
|
Huang X, Liu Y, Yu X, Huang Q, Lin C, Zeng J, Lan F, Wang Z. The clinical application of preimplantation genetic diagnosis for X-linked retinitis pigmentosa. J Assist Reprod Genet 2019; 36:989-994. [PMID: 30887160 DOI: 10.1007/s10815-019-01434-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/04/2019] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To investigate the usefulness of preimplantation genetic diagnosis (PGD) based on mutated allele revealed by sequencing with aneuploidy and linkage analyses (MARSALA) for a pedigree with X-linked retinitis pigmentosa (XLRP). METHODS One pathogenic mutation (c.494G > A) of the retinitis pigmentosa GTPase regulator (RPGR) gene was identified in a pedigree affected by XLRP. Then, PGD was carried out for the couple, of which the wife was an XLRP carrier. Three blastocysts were biopsied and then MARSALA was performed by next-generation sequencing (NGS). Prenatal diagnosis was also carried out to confirm the PGD results. RESULTS Three blastocysts were all unaffected. Then, one of the embryos was chosen randomly to be transferred, and the pregnancy was acquired successfully. The results of prenatal diagnosis were consistent with the PGD results. The fetus did not carry RPGR mutation (c.494G > A) and had normal chromosome karyotype. As a result, a healthy baby free of XLRP condition was born. CONCLUSION The PGD method based on MARSALA was established and applied to a family with XLRP successfully. MARSALA will be a valid tool, not only for XLRP families but also for families affected with other monogenetic disorders, to prevent transmission of the genetic disease from parents to offspring.
Collapse
Affiliation(s)
- Xinghua Huang
- Research Center for Molecular Diagnosis of Genetic Diseases, Fuzhou General Hospital, Clinical College of Fujian Medical University/Dongfang Hospital, Xiamen University Medical College, 156 Xi'erhuanbei Road, Fuzhou City, 350025, Fujian Province, People's Republic of China
| | - Yun Liu
- Department of Obstetrics & Gynecology, Center of Reproductive Medicine, Fuzhou General Hospital, Clinical College of Fujian Medical University/Dongfang Hospital, Xiamen University Medical College, Fuzhou, 350025, Fujian, China
| | - Xiurong Yu
- Research Center for Molecular Diagnosis of Genetic Diseases, Fuzhou General Hospital, Clinical College of Fujian Medical University/Dongfang Hospital, Xiamen University Medical College, 156 Xi'erhuanbei Road, Fuzhou City, 350025, Fujian Province, People's Republic of China
| | - Qiuxiang Huang
- Department of Obstetrics & Gynecology, Center of Reproductive Medicine, Fuzhou General Hospital, Clinical College of Fujian Medical University/Dongfang Hospital, Xiamen University Medical College, Fuzhou, 350025, Fujian, China
| | - Chunli Lin
- Department of Obstetrics & Gynecology, Center of Reproductive Medicine, Fuzhou General Hospital, Clinical College of Fujian Medical University/Dongfang Hospital, Xiamen University Medical College, Fuzhou, 350025, Fujian, China
| | - Jian Zeng
- Research Center for Molecular Diagnosis of Genetic Diseases, Fuzhou General Hospital, Clinical College of Fujian Medical University/Dongfang Hospital, Xiamen University Medical College, 156 Xi'erhuanbei Road, Fuzhou City, 350025, Fujian Province, People's Republic of China
| | - Fenghua Lan
- Research Center for Molecular Diagnosis of Genetic Diseases, Fuzhou General Hospital, Clinical College of Fujian Medical University/Dongfang Hospital, Xiamen University Medical College, 156 Xi'erhuanbei Road, Fuzhou City, 350025, Fujian Province, People's Republic of China
| | - Zhihong Wang
- Research Center for Molecular Diagnosis of Genetic Diseases, Fuzhou General Hospital, Clinical College of Fujian Medical University/Dongfang Hospital, Xiamen University Medical College, 156 Xi'erhuanbei Road, Fuzhou City, 350025, Fujian Province, People's Republic of China.
| |
Collapse
|
20
|
Wu H, Shen X, Huang L, Zeng Y, Gao Y, Shao L, Lu B, Zhong Y, Miao B, Xu Y, Wang Y, Li Y, Xiong L, Lu S, Xie XS, Zhou C. Genotyping single-sperm cells by universal MARSALA enables the acquisition of linkage information for combined pre-implantation genetic diagnosis and genome screening. J Assist Reprod Genet 2018; 35:1071-1078. [PMID: 29790070 DOI: 10.1007/s10815-018-1158-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/08/2018] [Indexed: 12/29/2022] Open
Abstract
PURPOSE This paper aims to investigate the feasibility of performing pre-implantation genetic diagnosis (PGD) and pre-implantation genetic screening (PGS) simultaneously by a universal strategy without the requirement of genotyping relevant affected family members or lengthy preliminary work on linkage analysis. METHODS By utilizing a universal Mutated Allele Revealed by Sequencing with Aneuploidy and Linkage Analyses (MARSALA) strategy based on low depth whole genome sequencing (~3x), not involving specific primers' design nor the enrichment of SNP markers for haplotype construction. Single-sperm cells and trephectoderm cells from in vitro fertilized embryos from a couple carrying HBB mutations were genotyped. Haplotypes of paternal alleles were constructed and investigated in embryos, and the chromosome copy number profiles were simultaneously analyzed. RESULTS The universal MARSALA strategy allows the selection of a euploid embryo free of disease mutations for in uterus transfer and successful pregnancy. A follow-up amniocentesis was performed at 17 weeks of gestation to confirm the PGD/PGS results. CONCLUSION We present the first successful PGD procedure based on genotyping multiple single-sperm cells to obtain SNP linkage information. Our improved PGD/PGS procedure does not require genotyping the proband or relevant family members and therefore can be applicable to a wider population of patients when conducting PGD for monogenic disorders.
Collapse
Affiliation(s)
- Haitao Wu
- Reproductive Medicine Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-Sen University, Jiangmen, Guangdong, 529030, China.,Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Xiaoting Shen
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Lei Huang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 01238, USA.,Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Yanhong Zeng
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Yumei Gao
- Yikon Genomics Co., Ltd., 1698 Wangyuan Road, Building #26, Fengxian District, Shanghai, 201400, China
| | - Lin Shao
- Yikon Genomics Co., Ltd., 1698 Wangyuan Road, Building #26, Fengxian District, Shanghai, 201400, China
| | - Baomin Lu
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Yiping Zhong
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Benyu Miao
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Yanwen Xu
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Yali Wang
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Yubin Li
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Luoxing Xiong
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences (CLS), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Sijia Lu
- Yikon Genomics Co., Ltd., 1698 Wangyuan Road, Building #26, Fengxian District, Shanghai, 201400, China
| | - X Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 01238, USA.,Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China.,Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, 100871, China
| | - Canquan Zhou
- Reproductive Medicine Center, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
21
|
Kubikova N, Babariya D, Sarasa J, Spath K, Alfarawati S, Wells D. Clinical application of a protocol based on universal next-generation sequencing for the diagnosis of beta-thalassaemia and sickle cell anaemia in preimplantation embryos. Reprod Biomed Online 2018; 37:136-144. [PMID: 29853423 DOI: 10.1016/j.rbmo.2018.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 10/16/2022]
Abstract
RESEARCH QUESTION Mutations of the beta-globin gene (HBB) cause beta-thalassaemia and sickle cell anaemia. These are the most common cause of severe inherited disease in humans. Traditional preimplantation genetic testing protocols for detecting HBB mutations frequently involve labour intensive, patient-specific test designs owing to the wide diversity of disease-associated HBB mutations. We, therefore, asked the question whether a universally applicable preimplantation genetic testing method can be developed to test for HBB gene mutations. DESIGN A multiplex polymerase chain reaction protocol was designed, allowing simultaneous amplification of multiple overlapping DNA fragments encompassing the entire HBB gene sequence in addition to 17 characterized, closely linked single nucleotide polymorphisms (SNP). Amplicons were then analysed using a next-generation sequencing method, revealing mutations and SNP genotypes. The protocol was extensively validated, optimized and eventually clinically applied on whole-genome amplified DNA derived from embryos of three couples carrying different combinations of beta-thalassaemia mutations. RESULTS The HBB mutation status and associated SNP haplotypes were successfully determined in all 21 embryos. Analysis of 141 heterozygous sites showed no instances of allele dropout and the test displayed 100% concordance compared with the results obtained from karyomapping. This suggests that the combination of trophectoderm biopsy and highly sensitive next-generation sequencing may provide superior accuracy than typically achieved using traditional preimplantation genetic testing methods. Importantly, no patient-specific test design or optimization was needed. CONCLUSIONS It is hoped that protocols that deliver almost universally applicable low-cost tests, without compromising diagnostic accuracy, will improve patient access to preimplantation genetic testing, especially in less affluent parts of the world.
Collapse
Affiliation(s)
- Nada Kubikova
- University of Oxford, Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, Level 3, Women's Centre, Oxford, OX3 9DU, UK.
| | - Dhruti Babariya
- CooperGenomics, Institute of Reproductive Sciences, Oxford Business Park North, Alec Issigonis Way, Oxford OX4 2HW, UK
| | | | - Katharina Spath
- CooperGenomics, Institute of Reproductive Sciences, Oxford Business Park North, Alec Issigonis Way, Oxford OX4 2HW, UK
| | - Samer Alfarawati
- CooperGenomics, Institute of Reproductive Sciences, Oxford Business Park North, Alec Issigonis Way, Oxford OX4 2HW, UK
| | - Dagan Wells
- University of Oxford, Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, Level 3, Women's Centre, Oxford, OX3 9DU, UK
| |
Collapse
|
22
|
Hao Y, Chen D, Zhang Z, Zhou P, Cao Y, Wei Z, Xu X, Chen B, Zou W, Lv M, Ji D, He X. Successful preimplantation genetic diagnosis by targeted next-generation sequencing on an ion torrent personal genome machine platform. Oncol Lett 2018. [PMID: 29541197 PMCID: PMC5835955 DOI: 10.3892/ol.2018.7876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Hearing loss may place a heavy burden on the patient and patient's family. Given the high incidence of hearing loss among newborns and the huge cost of treatment and care (including cochlear implantation), prenatal diagnosis is strongly recommended. Termination of the fetus may be considered as an extreme outcome to the discovery of a potential deaf fetus, and therefore preimplantation genetic diagnosis has become an important option for avoiding the birth of affected children without facing the risk of abortion following prenatal diagnosis. In one case, a couple had a 7-year-old daughter affected by non-syndromic sensorineural hearing loss. The affected fetus carried a causative compound heterozygous mutation c.919-2 A>G (IVS7-2 A>G) and c.1707+5 G>A (IVS15+5 G>A) of the solute carrier family 26 member 4 gene inherited from maternal and paternal sides, respectively. The present study applied multiple displacement amplification for whole genome amplification of biopsied trophectoderm cells and next-generation sequencing (NGS)-based single nucleotide polymorphism haplotyping on an Ion Torrent Personal Genome Machine. One unaffected embryo was transferred in a frozen-thawed embryo transfer cycle and the patient was impregnated. To conclude, to the best of our knowledge, this may be the first report of NGS-based preimplantation genetic diagnosis (PGD) for non-syndromic hearing loss caused by a compound heterozygous mutation using an Ion Torrent Personal Genome Machine. NGS provides unprecedented high-throughput, highly parallel and base-pair resolution data for genetic analysis. The method meets the requirements of medium-sized diagnostics laboratories. With decreased costs compared with previous techniques (such as Sanger sequencing), this technique may have potential widespread clinical application in PGD of other types of monogenic disease.
Collapse
Affiliation(s)
- Yan Hao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Institute of Reproductive Genetics, Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Dawei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Institute of Reproductive Genetics, Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Institute of Reproductive Genetics, Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Ping Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Institute of Reproductive Genetics, Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Institute of Reproductive Genetics, Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Institute of Reproductive Genetics, Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xiaofeng Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Institute of Reproductive Genetics, Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Beili Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Institute of Reproductive Genetics, Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Weiwei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Institute of Reproductive Genetics, Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Mingrong Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Institute of Reproductive Genetics, Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Dongmei Ji
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Institute of Reproductive Genetics, Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Institute of Reproductive Genetics, Anhui Medical University, Hefei, Anhui 230022, P.R. China.,Anhui Province Key Laboratory of Reproductive Health and Genetics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
23
|
Delgado A, Llerena G, Lopez R, Portella J, Inoue N, Noriega-Hoces L, Guzman L. A healthy HLA-matched baby born by using a combination of aCGH and Karyomapping: the first latin american case. JBRA Assist Reprod 2017; 21:370-375. [PMID: 29120571 PMCID: PMC5714608 DOI: 10.5935/1518-0557.20170063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PGD for HLA typing is a procedure that can be performed when an affected child
requires a transplant to treat a non-hereditary disorder related to the
hematopoietic and/or immune system. Hematopoietic stem cell transplantation from
an HLA-identical donor provides the best treatment option. Three conventional
ovarian stimulation procedures for IVF were performed in a couple with a
10-year-old child diagnosed with T-cell acute lymphoblastic leukemia of high
risk. Trophectoderm biopsy and aCGH examination were performed on 15
blastocysts, three on the first IVF procedure, four on the second cycle, and
eight on the third. Three euploid blastocysts HLA-compatible with the genome of
the affected child were identified. One euploid blastocyst HLA-compatible with
the affected child was warmed and transferred, resulting in an HLA-matched live
birth. In conclusion, combined aCGH for aneuploidy screening and Karyomapping
may be performed in a single biopsy procedure.
Collapse
Affiliation(s)
- Andrea Delgado
- PRANOR Laboratorio. Grupo de Reproducción Asistida. San Isidro. Lima. Peru.,Clinica Concebir. Calle Los Olivos 364. San Isidro. Lima 31. Peru
| | - Guillermo Llerena
- PRANOR Laboratorio. Grupo de Reproducción Asistida. San Isidro. Lima. Peru
| | | | - Jimmy Portella
- PRANOR Laboratorio. Grupo de Reproducción Asistida. San Isidro. Lima. Peru
| | - Naomi Inoue
- PRANOR Laboratorio. Grupo de Reproducción Asistida. San Isidro. Lima. Peru
| | - Luis Noriega-Hoces
- PRANOR Laboratorio. Grupo de Reproducción Asistida. San Isidro. Lima. Peru.,Clinica Concebir. Calle Los Olivos 364. San Isidro. Lima 31. Peru
| | - Luis Guzman
- PRANOR Laboratorio. Grupo de Reproducción Asistida. San Isidro. Lima. Peru.,Reprogenetics Latinoamérica, Lima-Peru
| |
Collapse
|