1
|
Paek HJ, Li ZY, Quan BH, Yin XJ. Application of PCR-RFLP for quick identification of MSTN mutants in MSTN mutant pig breeding. Anim Biotechnol 2023; 34:2231-2239. [PMID: 35697304 DOI: 10.1080/10495398.2022.2083628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Knockout of the MSTN gene is linked to the enlarged tongue, and it causes suckling difficulty in animals. The suckling difficulty has a severe effect on animal mortality. Thus, special care was required to ensure their survivability. Here, it is critical to promptly ascertain the genotype of all pigs after birth. The main objective of the present study was to develop the restriction enzyme-mediated PCR-RFLP assay for MSTN mutant pig genotyping. To accomplish this, conserved oligonucleotide primer and restriction site were deduced according to the mutated sequence of the MSTN mutant pigs. PCR amplification yielded a 176 bp band for all homozygous MSTN mutant (MSTN-/-), heterozygous MSTN mutant (MSTN+/-) and wild-type (WT) pigs. However, MSTN+/- samples produced two fragments with 176 and 87 bp, and WT samples produced one fragment with 87 bp after being digested by BstNI. MSTN-/- samples were not digested by BstNI and yielded a 176 bp band. Thus, we were able to determine the genotype of all pigs using BstNI restriction enzyme-mediated PCR-RFLP method. Overall, the present study reported a simple and fast PCR-RFLP genotyping method for MSTN mutant pig breeding. The present study may contribute to the establishment of commercial breeding systems and the production of double muscle pigs.
Collapse
Affiliation(s)
- Hyo-Jin Paek
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Zhou-Yan Li
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Biao-Hu Quan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
2
|
Chenouard V, Leray I, Tesson L, Remy S, Allan A, Archer D, Caulder A, Fortun A, Bernardeau K, Cherifi Y, Teboul L, David L, Anegon I. Excess of guide RNA reduces knockin efficiency and drastically increases on-target large deletions. iScience 2023; 26:106399. [PMID: 37034986 PMCID: PMC10074149 DOI: 10.1016/j.isci.2023.106399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/03/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
CRISPR-Cas9 cleavage efficacy and accuracy are the main challenges gene editing faces, and they are particularly affected by the optimal formation of the ribonucleoprotein (RNP) complex. We used nano differential scanning fluorimetry, a label and immobilization-free assay, to demonstrate that an equimolar ratio of Cas9 and guide RNA (gRNA) is optimal for RNP complex formation. We almost achieved 50% of green fluorescent protein (GFP) to blue fluorescent protein (BFP) conversion using a biallelic homozygous GFP human induced pluripotent stem cell line, when 0.4 μM of Cas9, equimolar Cas9/gRNA ratio and 2 μM of single-stranded oligonucleotide, were used and showed that increasing Cas9/gRNA ratio did not further improve KI efficiency. Additionally, excess gRNA decreased point mutation KI efficiency in rat embryos and drastically increased the occurrence of on-target large deletions. These findings highlight the importance of CRISPR/Cas9 stoichiometric optimization to ensure efficient and accurate KI generation, which will be applicable to other in vitro as well as in vivo models.
Collapse
Affiliation(s)
- Vanessa Chenouard
- INSERM, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
- genOway, Lyon 69007, France
| | - Isabelle Leray
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, F-44000 Nantes, France
| | - Laurent Tesson
- INSERM, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | - Severine Remy
- INSERM, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| | - Alasdair Allan
- Mary Lyon Centre, MRC Harwell Institute, Harwell Oxford, UK
| | - Daniel Archer
- Mary Lyon Centre, MRC Harwell Institute, Harwell Oxford, UK
| | - Adam Caulder
- Mary Lyon Centre, MRC Harwell Institute, Harwell Oxford, UK
| | - Agnès Fortun
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, Plateforme P2R, SFR Bonamy, F-44000 Nantes, France
- Cibles et Médicaments des Infections et du Cancer, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
| | - Karine Bernardeau
- Nantes Université, CHU Nantes, CNRS, Inserm, BioCore, US16, Plateforme P2R, SFR Bonamy, F-44000 Nantes, France
| | | | - Lydia Teboul
- Mary Lyon Centre, MRC Harwell Institute, Harwell Oxford, UK
| | - Laurent David
- INSERM, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
- Nantes Université, CHU Nantes, Inserm, CNRS, BioCore, F-44000 Nantes, France
| | - Ignacio Anegon
- INSERM, Nantes Université, CHU Nantes, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France
| |
Collapse
|
3
|
Wang M, Wang H, Li K, Li X, Wang X, Wang Z. Review of CRISPR/Cas Systems on Detection of Nucleotide Sequences. Foods 2023; 12:foods12030477. [PMID: 36766007 PMCID: PMC9913930 DOI: 10.3390/foods12030477] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Nowadays, with the rapid development of biotechnology, the CRISPR/Cas technology in particular has produced many new traits and products. Therefore, rapid and high-resolution detection methods for biotechnology products are urgently needed, which is extremely important for safety regulation. Recently, in addition to being gene editing tools, CRISPR/Cas systems have also been used in detection of various targets. CRISPR/Cas systems can be successfully used to detect nucleic acids, proteins, metal ions and others in combination with a variety of technologies, with great application prospects in the future. However, there are still some challenges need to be addressed. In this review, we will list some detection methods of genetically modified (GM) crops, gene-edited crops and single-nucleotide polymorphisms (SNPs) based on CRISPR/Cas systems, hoping to bring some inspiration or ideas to readers.
Collapse
Affiliation(s)
- Mengyu Wang
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haoqian Wang
- Development Center for Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Kai Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoman Li
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xujing Wang
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhixing Wang
- Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Ministry of Agriculture and Rural Affairs, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence:
| |
Collapse
|
4
|
Ménoret S, Tesson L, Remy S, Gourain V, Sérazin C, Usal C, Guiffes A, Chenouard V, Ouisse LH, Gantier M, Heslan JM, Fourgeux C, Poschmann J, Guillonneau C, Anegon I. CD4 + and CD8 + regulatory T cell characterization in the rat using a unique transgenic Foxp3-EGFP model. BMC Biol 2023; 21:8. [PMID: 36635667 PMCID: PMC9837914 DOI: 10.1186/s12915-022-01502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Regulatory T cells (Treg) in diverse species include CD4+ and CD8+ T cells. In all species, CD8+ Treg have been only partially characterized and there is no rat model in which CD4+ and CD8+ FOXP3+ Treg are genetically tagged. RESULTS We generated a Foxp3-EGFP rat transgenic line in which FOXP3 gene was expressed and controlled EGFP. CD4+ and CD8+ T cells were the only cells that expressed EGFP, in similar proportion as observed with anti-FOXP3 antibodies and co-labeled in the same cells. CD4+EGFP+ Treg were 5-10 times more frequent than CD8+EGFP+ Treg. The suppressive activity of CD4+ and CD8+ Treg was largely confined to EGFP+ cells. RNAseq analyses showed similarities but also differences among CD4+ and CD8+ EGFP+ cells and provided the first description of the natural FOXP3+CD8+ Treg transcriptome. In vitro culture of CD4+ and CD8+ EGFP- cells with TGFbeta and IL-2 generated induced EGFP+ Treg. CD4+ and CD8+ EGFP+ Treg were expanded upon in vivo administration of a low dose of IL-2. CONCLUSIONS This new and unique rat line constitutes a useful model to identify and isolate viable CD4+ and CD8+ FOXP3+ Treg. Additionally, it allows to identify molecules expressed in CD8+ Treg that may allow to better define their phenotype and function not only in rats but also in other species.
Collapse
Affiliation(s)
- Séverine Ménoret
- grid.277151.70000 0004 0472 0371Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016 CNRS UMS 3556, F-44000 Nantes, France ,grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Laurent Tesson
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Séverine Remy
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Victor Gourain
- grid.277151.70000 0004 0472 0371Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016 CNRS UMS 3556, F-44000 Nantes, France
| | - Céline Sérazin
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Claire Usal
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Aude Guiffes
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Vanessa Chenouard
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Malika Gantier
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Jean-Marie Heslan
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Cynthia Fourgeux
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Jeremie Poschmann
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Carole Guillonneau
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| | - Ignacio Anegon
- grid.4817.a0000 0001 2189 0784INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France
| |
Collapse
|
5
|
Montoliu L. Transgenesis and Genome Engineering: A Historical Review. Methods Mol Biol 2023; 2631:1-32. [PMID: 36995662 DOI: 10.1007/978-1-0716-2990-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Our ability to modify DNA molecules and to introduce them into mammalian cells or embryos almost appears in parallel, starting from the 1970s of the last century. Genetic engineering techniques rapidly developed between 1970 and 1980. In contrast, robust procedures to microinject or introduce DNA constructs into individuals did not take off until 1980 and evolved during the following two decades. For some years, it was only possible to add transgenes, de novo, of different formats, including artificial chromosomes, in a variety of vertebrate species or to introduce specific mutations essentially in mice, thanks to the gene-targeting methods by homologous recombination approaches using mouse embryonic stem (ES) cells. Eventually, genome-editing tools brought the possibility to add or inactivate DNA sequences, at specific sites, at will, irrespective of the animal species involved. Together with a variety of additional techniques, this chapter will summarize the milestones in the transgenesis and genome engineering fields from the 1970s to date.
Collapse
Affiliation(s)
- Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC) and Center for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), Madrid, Spain.
- National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
6
|
Delwarde C, Toquet C, Aumond P, Kayvanjoo AH, Foucal A, Le Vely B, Baudic M, Lauzier B, Blandin S, Véziers J, Paul-Gilloteaux P, Lecointe S, Baron E, Massaiu I, Poggio P, Rémy S, Anegon I, Le Marec H, Monassier L, Schott JJ, Mass E, Barc J, Le Tourneau T, Merot J, Capoulade R. Multimodality imaging and transciptomics to phenotype mitral valve dystrophy in a unique knock-in Filamin-A rat model. Cardiovasc Res 2022; 119:759-771. [PMID: 36001550 DOI: 10.1093/cvr/cvac136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 07/26/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS Degenerative mitral valve dystrophy (MVD) leading to mitral valve prolapse is the most frequent form of MV disease, and there is currently no pharmacological treatment available. The limited understanding of the pathophysiological mechanisms leading to MVD limits our ability to identify therapeutic targets. This study aimed to reveal the main pathophysiological pathways involved in MVD via the multimodality imaging and transcriptomic analysis of the new and unique Knock-In (KI) rat model for the FlnA-P637Q mutation associated-MVD. METHODS AND RESULTS WT and KI rats were evaluated morphologically, functionally, and histologically between 3-week-old and 3-to-6-month-old based on Doppler echocardiography, 3D micro-computed tomography (microCT), and standard histology. RNA-sequencing and Assay for Transposase-Accessible Chromatin (ATAC-seq) were performed on 3-week-old WT and KI mitral valves and valvular cells, respectively, to highlight the main signaling pathways associated with MVD. Echocardiographic exploration confirmed MV elongation (2.0 ± 0.1 mm versus 1.8 ± 0.1, p = 0.001), as well as MV thickening and prolapse in KI animals compared to WT at 3 weeks. 3D MV volume quantified by microCT was significantly increased in KI animals (+58% versus WT, p = 0.02). Histological analyses revealed a myxomatous remodeling in KI MV characterized by proteoglycans accumulation. A persistent phenotype was observed in adult KI rats. Signaling pathways related to extracellular matrix homeostasis, response to molecular stress, epithelial cell migration, endothelial to mesenchymal transition, chemotaxis and immune cell migration, were identified based on RNA-seq analysis. ATAC-seq analysis points to the critical role of TGF-β and inflammation in the disease. CONCLUSION The KI FlnA-P637Q rat model mimics human myxomatous mitral valve dystrophy, offering a unique opportunity to decipher pathophysiological mechanisms related to this disease. Extracellular matrix organization, epithelial cell migration, response to mechanical stress, and a central contribution of immune cells are highlighted as the main signaling pathways leading to myxomatous mitral valve dystrophy. Our findings pave the road to decipher underlying molecular mechanisms and the specific role of distinct cell populations in this context.
Collapse
Affiliation(s)
- Constance Delwarde
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Claire Toquet
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Pascal Aumond
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Amir Hossein Kayvanjoo
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn; 53115 Bonn, Germany
| | - Adrien Foucal
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Benjamin Le Vely
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Manon Baudic
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Benjamin Lauzier
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Stéphanie Blandin
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UAR 3556, F-44000 Nantes, France
| | - Joëlle Véziers
- INSERM, UMR 1229, RMeS, CHU Nantes PHU4 OTONN, Nantes Univ, Nantes, France
| | - Perrine Paul-Gilloteaux
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France.,Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UAR 3556, F-44000 Nantes, France
| | - Simon Lecointe
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Estelle Baron
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | | | - Paolo Poggio
- Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Séverine Rémy
- INSERM UMR 1064-CR2TI, Transgenic Rats ImmunoPhenomic, Nantes, France
| | - Ignacio Anegon
- INSERM UMR 1064-CR2TI, Transgenic Rats ImmunoPhenomic, Nantes, France
| | - Hervé Le Marec
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Laurent Monassier
- Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire UR7296, Université de Strasbourg, Strasbourg, France
| | - Jean Jacques Schott
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn; 53115 Bonn, Germany
| | - Julien Barc
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Thierry Le Tourneau
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Jean Merot
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Romain Capoulade
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| |
Collapse
|
7
|
Freuchet A, Salama A, Bézie S, Tesson L, Rémy S, Humeau R, Règue H, Sérazin C, Flippe L, Peterson P, Vimond N, Usal C, Ménoret S, Heslan JM, Duteille F, Blanchard F, Giral M, Colonna M, Anegon I, Guillonneau C. IL-34 deficiency impairs FOXP3 + Treg function in a model of autoimmune colitis and decreases immune tolerance homeostasis. Clin Transl Med 2022; 12:e988. [PMID: 36030499 PMCID: PMC9420423 DOI: 10.1002/ctm2.988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
Background Immune homeostasis requires fully functional Tregs with a stable phenotype to control autoimmunity. Although IL‐34 is a cytokine first described as mainly involved in monocyte cell survival and differentiation, we recently described its expression by CD8+ Tregs in a rat model of transplantation tolerance and by activated FOXP3+ CD4+ and CD8+ Tregs in human healthy individuals. However, its role in autoimmunity and potential in human diseases remains to be determined. Methods We generated Il34−/− rats and using both Il34−/− rats and mice, we investigated their phenotype under inflammatory conditions. Using Il34−/− rats, we further analyzed the impact of the absence of expression of IL‐34 for CD4+ Tregs suppressive function. We investigated the potential of IL‐34 in human disease to prevent xenogeneic GVHD and human skin allograft rejection in immune humanized immunodeficient NSG mice. Finally, taking advantage of a biocollection, we investigated the correlation between presence of IL‐34 in the serum and kidney transplant rejection. Results Here we report that the absence of expression of IL‐34 in Il34−/− rats and mice leads to an unstable immune phenotype, with production of multiple auto‐antibodies, exacerbated under inflammatory conditions with increased susceptibility to DSS‐ and TNBS‐colitis in Il34−/− animals. Moreover, we revealed the striking inability of Il34−/− CD4+ Tregs to protect Il2rg−/− rats from a wasting disease induced by transfer of pathogenic cells, in contrast to Il34+/+ CD4+ Tregs. We also showed that IL‐34 treatment delayed EAE in mice as well as GVHD and human skin allograft rejection in immune humanized immunodeficient NSG mice. Finally, we show that presence of IL‐34 in the serum is associated with a longer rejection‐free period in kidney transplanted patients. Conclusion Altogether, our data emphasize on the crucial necessity of IL‐34 for immune homeostasis and for CD4+ Tregs suppressive function. Our data also shows the therapeutic potential of IL‐34 in human transplantation and auto‐immunity. Highlights Absence of expression of IL‐34 in Il34−/− rats and mice leads to an unstable immune phenotype, with a production of multiple auto‐antibodies and exacerbated immune pathology under inflammatory conditions. Il34−/− CD4+ Tregs are unable to protect Il2rg−/− rats from colitis induced by transfer of pathogenic cells. IL‐34 treatment delayed EAE in mice, as well as acute GVHD and human skin allograft rejection in immune‐humanized immunodeficient NSG mice.
Collapse
Affiliation(s)
- Antoine Freuchet
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Apolline Salama
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Séverine Bézie
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Laurent Tesson
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Séverine Rémy
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Romain Humeau
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Hadrien Règue
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Céline Sérazin
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Léa Flippe
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Nadège Vimond
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Claire Usal
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Séverine Ménoret
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France.,CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Jean-Marie Heslan
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Franck Duteille
- Chirurgie Plastique Reconstructrice et Esthétique, CHU Nantes, Nantes, France
| | - Frédéric Blanchard
- INSERM UMR1238, Bone Sarcoma and remodeling of calcified tissues, Nantes University, Nantes, France
| | - Magali Giral
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ignacio Anegon
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Carole Guillonneau
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| |
Collapse
|
8
|
Besnard M, Sérazin C, Ossart J, Moreau A, Vimond N, Flippe L, Sein H, Smith GA, Pittaluga S, Ferré EM, Usal C, Anegon I, Ranki A, Lionakis MS, Peterson P, Guillonneau C. Anti-CD45RC antibody immunotherapy prevents and treats experimental Autoimmune PolyEndocrinopathy Candidiasis Ectodermal Dystrophy syndrome. J Clin Invest 2022; 132:156507. [PMID: 35167497 PMCID: PMC8970675 DOI: 10.1172/jci156507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Targeted monoclonal antibody (mAb) therapies show great promise for the treatment of transplant rejection and autoimmune diseases by inducing more specific immunomodulatory effects than broadly immunosuppressive drugs routinely used. We recently described the therapeutic advantage of targeting CD45RC, expressed at high levels by conventional T cells (Tconv, CD45RChigh), their precursors and terminally differentiated T (TEMRA) cells, but not by regulatory T cells (Tregs, CD45RClow/-). We demonstrated efficacy of anti-CD45RC mAb treatment in transplantation but its potential has not been examined in autoimmune diseases. APECED is a rare genetic syndrome caused by loss-of-function mutations of the key central tolerance mediator, autoimmune regulator (AIRE) leading to abnormal auto-reactive T cell responses and autoantibodies production. Herein, we showed that, in a rat model of APECED syndrome, anti-CD45RC mAb was effective both as prevention and treatment of autoimmune manifestations and inhibited autoantibody development. Anti-CD45RC mAb intervention depleted CD45RChigh T cells, inhibited CD45RChigh B cells, and restored the Treg/Tconv ratio and the altered Tregs transcriptomic profile. In APECED patients, CD45RC was significantly increased in peripheral blood T cells and lesioned organs from APECED patients were infiltrated by CD45RChigh cells. Our observations highlight the potential role for CD45RChigh cells in the pathogenesis of experimental and human APECED syndrome and the potential of anti-CD45RC antibody treatment.
Collapse
Affiliation(s)
- Marine Besnard
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, University of Nantes, Nantes, France
| | - Céline Sérazin
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, University of Nantes, Nantes, France
| | - Jason Ossart
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, University of Nantes, Nantes, France
| | - Anne Moreau
- Department of Pathology, CHU Nantes, Nantes, France
| | - Nadège Vimond
- Department of Immunology, AbolerIS Pharma, Nantes, France
| | - Léa Flippe
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, University of Nantes, Nantes, France
| | - Hanna Sein
- Department of Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Grace A Smith
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States of America
| | | | - Elise Mn Ferré
- Laboratory of Clinical Immunology and Microbiology, NIAID/NIH, Bethesda, United States of America
| | - Claire Usal
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, University of Nantes, Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, University of Nantes, Nantes, France
| | - Annamari Ranki
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology, NIAID/NIH, Bethesda, United States of America
| | - Pärt Peterson
- Department of Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie, UMR 1064, INSERM, University of Nantes, Nantes, France
| |
Collapse
|
9
|
Yang F, Zhang H, Cai S, Imtiaz K, Li M, Wang M, Liu Y, Xue F, Zhang L, Gu F. Green Fluorescent Protein Tagged Polycistronic Reporter System Reveals Functional Editing Characteristics of CRISPR-Cas. CRISPR J 2022; 5:254-263. [PMID: 35085009 DOI: 10.1089/crispr.2021.0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The green fluorescent protein (GFP)-based reporter system has been widely harnessed as a quick quantitative activity assessment method for characterizing CRISPR-Cas via flow cytometry. However, due to the small size (738 nt) of the GFP coding sequence, the targeting sites for certain CRISPR-Cas are greatly restricted. To address this, here we developed a GFP tagged polycistronic reporter system to determine the activity of CRISPR-Cas in human cells. Specifically, the system contains the herpes simplex virus thymidine kinase (TK) gene, bacterial neomycin phosphotransferase (Neo) gene, and green fluorescent protein (GFP), named TNG gene, with a coding sequence of 2,577 nt. To investigate its performance, we generated a human cell line harboring the TNG expression cassette at the AAVS1 locus, and then we tested it with different Cas orthologs (SaCas9, St1Cas9, and AsCas12a). Our results demonstrated that using the TNG reporter system greatly expands the targeting site selection (3- to 13-fold) with CRISPR-Cas genome editing. The study therefore reports an additional method for the characterization of CRISPR-Cas technology.
Collapse
Affiliation(s)
- Fayu Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| | - Hao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| | - Shuo Cai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| | - Kiran Imtiaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| | - Mingchun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| | - Mi Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| | - Yingchun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| | - Feiqun Xue
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| | - Lifang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| | - Feng Gu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| |
Collapse
|
10
|
Kalds P, Crispo M, Li C, Tesson L, Anegón I, Chen Y, Wang X, Menchaca A. Generation of Double-Muscled Sheep and Goats by CRISPR /Cas9-Mediated Knockout of the Myostatin Gene. Methods Mol Biol 2022; 2495:295-323. [PMID: 35696040 DOI: 10.1007/978-1-0716-2301-5_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The myostatin (MSTN) gene has shown to play a critical role in the regulation of skeletal muscle mass, and the translational inhibition of this gene has shown increased muscle mass, generating what is known as "double-muscling phenotype." Disruption of the MSTN gene expression using the CRISPR/Cas9 genome-editing system has shown improved muscle development and growth rates in livestock species, including sheep and goats. Here, we describe procedures for the generation of MSTN knockout sheep and goats using the microinjection approach of the CRISPR/Cas9 system, including the selection of targeting sgRNAs, the construction of CRISPR/Cas9 targeting vector, the in vitro examination of system efficiency, the in vivo targeting to generate MSTN knockout founders, the genomic and phenotypic characterization of the generated offspring, and the assessment of off-target effects in gene-edited founders through targeted validation of predicted off-target sites, as well as genome-wide off-target analysis by whole-genome sequencing. Editing the MSTN gene using the CRISPR/Cas9 system might be a rapid and promising alternative to promote meat production in livestock.
Collapse
Affiliation(s)
- Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Department of Animal and Poultry Production, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Martina Crispo
- Unidad de Biotecnología en Animales de Laboratorio (UBAL), Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Chao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Laurent Tesson
- INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Transgenesis Rat ImmunoPhenomic Facility (TRIP), Nantes, France
| | - Ignacio Anegón
- INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Nantes, France
- Transgenesis Rat ImmunoPhenomic Facility (TRIP), Nantes, France
- GenoCellEdit Facility, Nantes, France
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| | - Alejo Menchaca
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay.
- Instituto Nacional de Investigación Agropecuaria (INIA), Montevideo, Uruguay.
| |
Collapse
|
11
|
Xiao G, Fu X, Zhang J, Liu S, Wang Z, Ye T, Zhang G. Rapid and cost-effective screening of CRISPR/Cas9-induced mutants by DNA-guided Argonaute nuclease. Biotechnol Lett 2021; 43:2105-2110. [PMID: 34532823 PMCID: PMC8445740 DOI: 10.1007/s10529-021-03177-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022]
Abstract
Objective With the widespread application of CRISPR/Cas9 gene editing technology, new methods are needed to screen mutants quickly and effectively. Here, we aimed to develop a simple and cost-effective method to screen CRISPR/Cas9-induced mutants. Result We report a novel method to identify CRISPR/Cas9-induced mutants through a DNA-guided Argonaute nuclease derived from the archaeon Pyrococcus furiosus. We demonstrated that the Pyrococcus furiosus Argonaute (PfAgo)-based method could distinguish among biallelic mutants, monoallelic mutants and wild type (WT). Furthermore, this method was able to identify 1 bp indel mutations. Conclusion The PfAgo-based method is simple to implement and can be applied to screen biallelic mutants and mosaic mutants generated by CRISPR-Cas9 or other kinds of gene editing tools. Supplementary Information The online version contains supplementary material available at 10.1007/s10529-021-03177-z.
Collapse
Affiliation(s)
- Guohui Xiao
- National Clinical Research Center for Infectious Diseases, Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, China.
| | - Xiangdong Fu
- National Clinical Research Center for Infectious Diseases, Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, China
| | - Juanjuan Zhang
- National Clinical Research Center for Infectious Diseases, Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, China
| | - Shuyan Liu
- National Clinical Research Center for Infectious Diseases, Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, China
| | - Zhaoqin Wang
- National Clinical Research Center for Infectious Diseases, Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, China
| | - Taosheng Ye
- National Clinical Research Center for Infectious Diseases, Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Southern University of Science and Technology, Shenzhen Third People's Hospital, Shenzhen, China.
| |
Collapse
|
12
|
Schweickert PG, Wang N, Sandefur SL, Lloyd ME, Konieczny SF, Frye CC, Cheng Z. CRISPR/Cas12a-mediated CHO genome engineering can be effectively integrated at multiple stages of the cell line generation process for bioproduction. Biotechnol J 2021; 16:e2000308. [PMID: 33369118 DOI: 10.1002/biot.202000308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 11/10/2022]
Abstract
Most biopharmaceuticals produced today are generated using Chinese hamster ovary (CHO) cells, therefore significant attention is focused on methods to improve CHO cell productivity and product quality. The discovery of gene-editing tools, such as CRISPR/Cas9, offers new opportunities to improve CHO cell bioproduction through cell line engineering. Recently an additional CRISPR-associated protein, Cas12a (Cpf1), was shown to be effective for gene editing in eukaryotic cells, including CHO. In this study, we demonstrate the successful application of CRISPR/Cas12a for the generation of clonally derived CHO knockout (KO) cell lines with improved product quality attributes. While we found Cas12a efficiency to be highly dependent on the targeting RNA used, we were able to generate CHO KO cell lines using small screens of only 96-320 clonally derived cell lines. Additionally, we present a novel bulk culture analysis approach that can be used to quickly assess CRISPR RNA efficiency and determine ideal screen sizes for generating genetic KO cell lines. Most critically, we find that Cas12a can be directly integrated into the cell line generation process through cotransfection with no negative impact on titer or screen size. Overall, our results show CRISPR/Cas12a to be an efficient and effective CHO genome editing tool.
Collapse
Affiliation(s)
- Patrick G Schweickert
- Department of Biological Sciences and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Ning Wang
- Bioprocess Research and Development, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Stephanie L Sandefur
- Bioprocess Research and Development, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Michael E Lloyd
- Bioprocess Research and Development, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Stephen F Konieczny
- Department of Biological Sciences and the Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Christopher C Frye
- Bioprocess Research and Development, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Zhuo Cheng
- Bioprocess Research and Development, Eli Lilly and Company, Indianapolis, Indiana, USA
| |
Collapse
|
13
|
Abstract
Supplemental Digital Content is available in the text. Background. Humanized immune system immunodeficient mice have been extremely useful for the in vivo analyses of immune responses in a variety of models, including organ transplantation and graft versus host disease (GVHD) but they have limitations. Rat models are interesting complementary alternatives presenting advantages over mice, such as their size and their active complement compartment. Immunodeficient rats have been generated but human immune responses have not yet been described. Methods. We generated immunodeficient Rat Rag−/− Gamma chain−/− human signal regulatory protein alpha-positive (RRGS) rats combining Rag1 and Il2rg deficiency with the expression of human signal regulatory protein alpha, a negative regulator of macrophage phagocytosis allowing repression of rat macrophages by human CD47-positive cells. We then immune humanized RRGS animals with human peripheral blood mononuclear cells (hPBMCs) to set up a human acute GVHD model. Treatment of GVHD was done with a new porcine antihuman lymphocyte serum active through complement-dependent cytotoxicity. We also established a tumor xenograft rejection model in these hPBMCs immune system RRGS animals by subcutaneous implantation of a human tumor cell line. Results. RRGS animals receiving hPBMCs showed robust and reproducible reconstitution, mainly by T and B cells. A dose-dependent acute GVHD process was observed with progressive weight loss, tissue damage, and death censoring. Antihuman lymphocyte serum (L1S1) antibody completely prevented acute GVHD. In the human tumor xenograft model, detectable tumors were rejected upon hPBMCs injection. Conclusions. hPBMC can be implanted in RRGS animals and elicit acute GVHD or rejection of human tumor cells and these are useful models to test new immunotherapies.
Collapse
|
14
|
Menchaca A, Dos Santos-Neto PC, Souza-Neves M, Cuadro F, Mulet AP, Tesson L, Chenouard V, Guiffès A, Heslan JM, Gantier M, Anegón I, Crispo M. Otoferlin gene editing in sheep via CRISPR-assisted ssODN-mediated Homology Directed Repair. Sci Rep 2020; 10:5995. [PMID: 32265471 PMCID: PMC7138848 DOI: 10.1038/s41598-020-62879-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/21/2020] [Indexed: 11/20/2022] Open
Abstract
Different mutations of the OTOF gene, encoding for otoferlin protein expressed in the cochlear inner hair cells, induces a form of deafness that is the major cause of nonsyndromic recessive auditory neuropathy spectrum disorder in humans. We report the generation of the first large animal model of OTOF mutations using the CRISPR system associated with different Cas9 components (mRNA or protein) assisted by single strand oligodeoxynucleotides (ssODN) to induce homology-directed repair (HDR). Zygote microinjection was performed with two sgRNA targeting exon 5 and 6 associated to Cas9 mRNA or protein (RNP) at different concentrations in a mix with an ssODN template targeting HDR in exon 5 containing two STOP sequences. A total of 73 lambs were born, 13 showing indel mutations (17.8%), 8 of which (61.5%) had knock-in mutations by HDR. Higher concentrations of Cas9-RNP induced targeted mutations more effectively, but negatively affected embryo survival and pregnancy rate. This study reports by the first time the generation of OTOF disrupted sheep, which may allow better understanding and development of new therapies for human deafness related to genetic disorders. These results support the use of CRISPR/Cas system assisted by ssODN as an effective tool for gene editing in livestock.
Collapse
Affiliation(s)
- A Menchaca
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay.
| | - P C Dos Santos-Neto
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | - M Souza-Neves
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | - F Cuadro
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | - A P Mulet
- Unidad de Animales Transgénicos y de Experimentación (UATE), Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - L Tesson
- Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France.,Transgenesis Rat ImmunoPhenomic facility (TRIP), F-44000, Nantes, France
| | - V Chenouard
- Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France.,Transgenesis Rat ImmunoPhenomic facility (TRIP), F-44000, Nantes, France
| | - A Guiffès
- Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France.,Transgenesis Rat ImmunoPhenomic facility (TRIP), F-44000, Nantes, France
| | - J M Heslan
- Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France.,GenoCellEdit facility, F-44000, Nantes, France
| | - M Gantier
- Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France.,GenoCellEdit facility, F-44000, Nantes, France
| | - I Anegón
- Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France. .,Transgenesis Rat ImmunoPhenomic facility (TRIP), F-44000, Nantes, France. .,GenoCellEdit facility, F-44000, Nantes, France.
| | - M Crispo
- Unidad de Animales Transgénicos y de Experimentación (UATE), Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
15
|
Dreano E, Bacchetta M, Simonin J, Galmiche L, Usal C, Slimani L, Sadoine J, Tesson L, Anegon I, Concordet J, Hatton A, Vignaud L, Tondelier D, Sermet‐Gaudelus I, Chanson M, Cottart C. Characterization of two rat models of cystic fibrosis-KO and F508del CFTR-Generated by Crispr-Cas9. Animal Model Exp Med 2019; 2:297-311. [PMID: 31942562 PMCID: PMC6930998 DOI: 10.1002/ame2.12091] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/22/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Genetically engineered animals are essential for gaining a proper understanding of the disease mechanisms of cystic fibrosis (CF). The rat is a relevant laboratory model for CF because of its zootechnical capacity, size, and airway characteristics, including the presence of submucosal glands. METHODS We describe the generation of a CF rat model (F508del) homozygous for the p.Phe508del mutation in the transmembrane conductance regulator (Cftr) gene. This model was compared to new Cftr -/- rats (CFTR KO). Target organs in CF were examined by histological staining of tissue sections and tooth enamel was quantified by micro-computed tomography. The activity of CFTR was evaluated by nasal potential difference (NPD) and short-circuit current measurements. The effect of VX-809 and VX-770 was analyzed on nasal epithelial primary cell cultures from F508del rats. RESULTS Both newborn F508del and Knock out (KO) animals developed intestinal obstruction that could be partly compensated by special diet combined with an osmotic laxative. The two rat models exhibited CF phenotypic anomalies such as vas deferens agenesis and tooth enamel defects. Histology of the intestine, pancreas, liver, and lungs was normal. Absence of CFTR function in KO rats was confirmed ex vivo by short-circuit current measurements on colon mucosae and in vivo by NPD, whereas residual CFTR activity was observed in F508del rats. Exposure of F508del CFTR nasal primary cultures to a combination of VX-809 and VX-770 improved CFTR-mediated Cl- transport. CONCLUSIONS The F508del rats reproduce the phenotypes observed in CFTR KO animals and represent a novel resource to advance the development of CF therapeutics.
Collapse
Affiliation(s)
| | - Marc Bacchetta
- Département de PédiatrieGynécologie & Obstétrique et Département de Physiologie Cellulaire & MétabolismeUniversité de GenèveGenèveSwitzerland
| | - Juliette Simonin
- Département de PédiatrieGynécologie & Obstétrique et Département de Physiologie Cellulaire & MétabolismeUniversité de GenèveGenèveSwitzerland
| | - Louise Galmiche
- Département de PathologieAPHPCHU Necker‐Enfants MaladesParisFrance
| | - Claire Usal
- Centre de Recherche en Transplantation & ImmunologieUMR 1064INSERMUniversité de NantesNantesFrance
- Plateforme Trangénèse Rat & ImmunoPhénomiqueINSERM 1064 & SFR François BonamyCNRS UMS3556NantesFrance
| | - Lotfi Slimani
- Pathologie, Imagerie & Biothérapies OrofacialesMontrougeFrance
- Plateforme Imageries du vivantFaculté de chirurgie dentaireUniversité de ParisParisFrance
| | - Jérémy Sadoine
- Pathologie, Imagerie & Biothérapies OrofacialesMontrougeFrance
| | - Laurent Tesson
- Centre de Recherche en Transplantation & ImmunologieUMR 1064INSERMUniversité de NantesNantesFrance
- Plateforme Trangénèse Rat & ImmunoPhénomiqueINSERM 1064 & SFR François BonamyCNRS UMS3556NantesFrance
| | - Ignacio Anegon
- Centre de Recherche en Transplantation & ImmunologieUMR 1064INSERMUniversité de NantesNantesFrance
- Plateforme Trangénèse Rat & ImmunoPhénomiqueINSERM 1064 & SFR François BonamyCNRS UMS3556NantesFrance
| | | | | | | | | | - Isabelle Sermet‐Gaudelus
- INSERM 1151INEMUniversité de ParisParisFrance
- AP‐HPCentre Maladie Rare Mucoviscidose et Maladies du CFTRAssistance Publique Hôpitaux de ParisHôpital Necker‐Enfants MaladesParisFrance
- Faculté de Médecine de ParisUniversité de ParisParisFrance
| | - Marc Chanson
- Département de PédiatrieGynécologie & Obstétrique et Département de Physiologie Cellulaire & MétabolismeUniversité de GenèveGenèveSwitzerland
| | - Charles‐Henry Cottart
- INSERM 1151INEMUniversité de ParisParisFrance
- AP‐HPCentre Maladie Rare Mucoviscidose et Maladies du CFTRAssistance Publique Hôpitaux de ParisHôpital Necker‐Enfants MaladesParisFrance
- Faculté de Pharmacie de ParisUniversité de ParisParisFrance
| |
Collapse
|
16
|
Generation of Immunodeficient Rats With Rag1 and Il2rg Gene Deletions and Human Tissue Grafting Models. Transplantation 2018; 102:1271-1278. [DOI: 10.1097/tp.0000000000002251] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Yang F, Ge X, He X, Liu X, Zhou C, Sun H, Zhang J, Zhao J, Song Z, Qu J, Liu C, Gu F. Functional non-homologous end joining patterns triggered by CRISPR/Cas9 in human cells. J Genet Genomics 2018; 45:S1673-8527(18)30078-X. [PMID: 29929850 DOI: 10.1016/j.jgg.2018.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/07/2018] [Accepted: 02/08/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Fayu Yang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou 325027, China
| | - Xianglian Ge
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou 325027, China
| | - Xiubin He
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou 325027, China
| | - Xiexie Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou 325027, China
| | - Chenchen Zhou
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou 325027, China
| | - Huihui Sun
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou 325027, China
| | - Junsong Zhang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou 325027, China
| | - Junzhao Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zongming Song
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou 325027, China; Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou 325027, China
| | - Changbao Liu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou 325027, China.
| |
Collapse
|
18
|
Charpentier M, Khedher AHY, Menoret S, Brion A, Lamribet K, Dardillac E, Boix C, Perrouault L, Tesson L, Geny S, De Cian A, Itier JM, Anegon I, Lopez B, Giovannangeli C, Concordet JP. CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nat Commun 2018; 9:1133. [PMID: 29556040 PMCID: PMC5859065 DOI: 10.1038/s41467-018-03475-7] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 02/16/2018] [Indexed: 12/18/2022] Open
Abstract
In genome editing with CRISPR-Cas9, transgene integration often remains challenging. Here, we present an approach for increasing the efficiency of transgene integration by homology-dependent repair (HDR). CtIP, a key protein in early steps of homologous recombination, is fused to Cas9 and stimulates transgene integration by HDR at the human AAVS1 safe harbor locus. A minimal N-terminal fragment of CtIP, designated HE for HDR enhancer, is sufficient to stimulate HDR and this depends on CDK phosphorylation sites and the multimerization domain essential for CtIP activity in homologous recombination. HDR stimulation by Cas9-HE, however, depends on the guide RNA used, a limitation that may be overcome by testing multiple guides to the locus of interest. The Cas9-HE fusion is simple to use and allows obtaining twofold or more efficient transgene integration than that with Cas9 in several experimental systems, including human cell lines, iPS cells, and rat zygotes.
Collapse
Affiliation(s)
- M Charpentier
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France
| | - A H Y Khedher
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France
- Translational Sciences, Sanofi, 13 Quai Jules Guesde, F-94400, Vitry-sur-Seine, France
| | - S Menoret
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU de Nantes, 30 Avenue Jean Monnet, F-44093, Nantes, France
| | - A Brion
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France
| | - K Lamribet
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France
| | - E Dardillac
- Equipe Labellisée Ligue Contre le Cancer, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, CNRS UMR 8200, 114 rue Edouard Vaillant, Villejuif, F-94805, France
| | - C Boix
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France
| | - L Perrouault
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France
| | - L Tesson
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU de Nantes, 30 Avenue Jean Monnet, F-44093, Nantes, France
| | - S Geny
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France
| | - A De Cian
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France
| | - J M Itier
- Translational Sciences, Sanofi, 13 Quai Jules Guesde, F-94400, Vitry-sur-Seine, France
| | - I Anegon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, CHU de Nantes, 30 Avenue Jean Monnet, F-44093, Nantes, France
| | - B Lopez
- Equipe Labellisée Ligue Contre le Cancer, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, CNRS UMR 8200, 114 rue Edouard Vaillant, Villejuif, F-94805, France
| | - C Giovannangeli
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France
| | - J P Concordet
- Museum National d'Histoire Naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universités, 43 rue Cuvier, Paris, F-75231, France.
| |
Collapse
|
19
|
Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene. PLoS One 2018; 13:e0192602. [PMID: 29447206 PMCID: PMC5813945 DOI: 10.1371/journal.pone.0192602] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/28/2018] [Indexed: 01/20/2023] Open
Abstract
Anti-HCMV treatments used in immunosuppressed patients reduce viral replication, but resistant viral strains can emerge. Moreover, these drugs do not target latently infected cells. We designed two anti-viral CRISPR/Cas9 strategies to target the UL122/123 gene, a key regulator of lytic replication and reactivation from latency. The singleplex strategy contains one gRNA to target the start codon. The multiplex strategy contains three gRNAs to excise the complete UL122/123 gene. Primary fibroblasts and U-251 MG cells were transduced with lentiviral vectors encoding Cas9 and one or three gRNAs. Both strategies induced mutations in the target gene and a concomitant reduction of immediate early (IE) protein expression in primary fibroblasts. Further detailed analysis in U-251 MG cells showed that the singleplex strategy induced 50% of indels in the viral genome, leading to a reduction in IE protein expression. The multiplex strategy excised the IE gene in 90% of all viral genomes and thus led to the inhibition of IE protein expression. Consequently, viral genome replication and late protein expression were reduced by 90%. Finally, the production of new viral particles was nearly abrogated. In conclusion, the multiplex anti-UL122/123 CRISPR/Cas9 system can target the viral genome efficiently enough to significantly prevent viral replication.
Collapse
|
20
|
Hua Y, Wang C, Huang J, Wang K. A simple and efficient method for CRISPR/Cas9-induced mutant screening. J Genet Genomics 2017; 44:207-213. [PMID: 28416245 DOI: 10.1016/j.jgg.2017.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/17/2017] [Accepted: 03/07/2017] [Indexed: 11/28/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system provides a technological breakthrough in mutant generation. Several methods such as the polymerase chain reaction (PCR)/restriction enzyme (RE) assay, T7 endonuclease I (T7EI) assay, Surveyor nuclease assay, PAGE-based genotyping assay, and high-resolution melting (HRM) analysis-based assay have been developed for screening CRISPR/Cas9-induced mutants. However, these methods are time- and labour-intensive and may also be sequence-limited or require very expensive equipment. Here, we described a cost-effective and sensitive screening technique based on conventional PCR, annealing at critical temperature PCR (ACT-PCR), for identifying mutants. ACT-PCR requires only a single PCR step followed by agarose gel electrophoresis. We demonstrated that ACT-PCR accurately distinguished CRISPR/Cas9-induced mutants from wild type in both rice and zebrafish. Moreover, the method can be adapted for accurately determining mutation frequency in cultured cells. The simplicity of ACT-PCR makes it particularly suitable for rapid, large-scale screening of CRISPR/Cas9-induced mutants in both plants and animals.
Collapse
Affiliation(s)
- Yufeng Hua
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Chun Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Jian Huang
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Kejian Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China.
| |
Collapse
|
21
|
|
22
|
Jung CJ, Ménoret S, Brusselle L, Tesson L, Usal C, Chenouard V, Remy S, Ouisse LH, Poirier N, Vanhove B, de Jong PJ, Anegon I. Comparative Analysis of piggyBac, CRISPR/Cas9 and TALEN Mediated BAC Transgenesis in the Zygote for the Generation of Humanized SIRPA Rats. Sci Rep 2016; 6:31455. [PMID: 27530248 PMCID: PMC4987655 DOI: 10.1038/srep31455] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/14/2016] [Indexed: 01/12/2023] Open
Abstract
BAC transgenic mammalian systems offer an important platform for recapitulating human gene expression and disease modeling. While the larger body mass, and greater genetic and physiologic similarity to humans render rats well suited for reproducing human immune diseases and evaluating therapeutic strategies, difficulties of generating BAC transgenic rats have hindered progress. Thus, an efficient method for BAC transgenesis in rats would be valuable. Immunodeficient mice carrying a human SIRPA transgene have previously been shown to support improved human cell hematopoiesis. Here, we have generated for the first time, human SIRPA BAC transgenic rats, for which the gene is faithfully expressed, functionally active, and germline transmissible. To do this, human SIRPA BAC was modified with elements to work in coordination with genome engineering technologies-piggyBac, CRISPR/Cas9 or TALEN. Our findings show that piggyBac transposition is a more efficient approach than the classical BAC transgenesis, resulting in complete BAC integration with predictable end sequences, thereby permitting precise assessment of the integration site. Neither CRISPR/Cas9 nor TALEN increased BAC transgenesis. Therefore, an efficient generation of human SIRPA transgenic rats using piggyBac opens opportunities for expansion of humanized transgenic rat models in the future to advance biomedical research and therapeutic applications.
Collapse
Affiliation(s)
- Chris J Jung
- Center for Genetics, Children's Hospital Oakland Research Institute, CA 94609, Oakland, USA
| | - Séverine Ménoret
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Lucas Brusselle
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Laurent Tesson
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Claire Usal
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Vanessa Chenouard
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Séverine Remy
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Laure-Hélène Ouisse
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| | - Nicolas Poirier
- INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France.,OSE Immunotherapeutics, 44000 Nantes, France
| | - Bernard Vanhove
- INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France.,OSE Immunotherapeutics, 44000 Nantes, France
| | - Pieter J de Jong
- Center for Genetics, Children's Hospital Oakland Research Institute, CA 94609, Oakland, USA
| | - Ignacio Anegon
- Platform Rat Transgenesis Immunophenomic, SFR Francois Bonamy, CNRS UMS3556 Nantes, F44093, France.,INSERM UMR 1064-ITUN; CHU de Nantes, Nantes F44093, France
| |
Collapse
|
23
|
Lemoine A, Chauveau-Le Friec G, Langa F, Louvet C. Generation of a Double KO Mouse by Simultaneous Targeting of the Neighboring Genes Tmem176a and Tmem176b Using CRISPR/Cas9: Key Steps from Design to Genotyping. J Genet Genomics 2016; 43:329-40. [DOI: 10.1016/j.jgg.2016.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/26/2016] [Accepted: 04/04/2016] [Indexed: 01/16/2023]
|