1
|
Gao Y, Chen Y, Qiao J, Huang J, Wen L. DNA methylation protocol for analyzing cell-free DNA in the spent culture medium of human preimplantation embryos. STAR Protoc 2023; 4:102247. [PMID: 37086412 PMCID: PMC10160802 DOI: 10.1016/j.xpro.2023.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/13/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023] Open
Abstract
Cell-free DNA (cfDNA) in spent embryo culture media (SECM) provides prospects for noninvasive preimplantation genetic testing. Here, we present a post-bisulfite-adapter-tagging (PBAT)-based whole-genome DNA methylation sequencing protocol (SECM-PBAT) for human SECM cfDNA analysis. We describe steps for SECM lysis, bisulfite conversion and purification, preamplification by random priming, tagging adapter II, and library establishment. We then detail library quality control, sequencing, and bioinformatics analysis. This approach simultaneously detects chromosome aneuploidy and deduces the proportional contributions of cellular components. For complete details on the use and execution of this protocol, please refer to Chen et al. (2021).1.
Collapse
Affiliation(s)
- Yuan Gao
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Yidong Chen
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Key Laboratory of Cell Proliferation and Differentiation, Ministry of Education, Beijing 100871, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100871, China.
| | - Jie Qiao
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Key Laboratory of Cell Proliferation and Differentiation, Ministry of Education, Beijing 100871, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100871, China
| | - Jin Huang
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Key Laboratory of Cell Proliferation and Differentiation, Ministry of Education, Beijing 100871, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100871, China.
| | - Lu Wen
- Biomedical Pioneering Innovation Center, Department of Obstetrics and Gynecology, Third Hospital, School of Life Sciences, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics, Center for Reproductive Medicine, Third Hospital, Peking University, Beijing 100871, China; Key Laboratory of Assisted Reproduction, Key Laboratory of Cell Proliferation and Differentiation, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
2
|
Kim J, Lee J, Jun JH. Non-invasive evaluation of embryo quality for the selection of transferable embryos in human in vitro fertilization-embryo transfer. Clin Exp Reprod Med 2022; 49:225-238. [PMID: 36482497 PMCID: PMC9732075 DOI: 10.5653/cerm.2022.05575] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 07/28/2023] Open
Abstract
The ultimate goal of human assisted reproductive technology is to achieve a healthy pregnancy and birth, ideally from the selection and transfer of a single competent embryo. Recently, techniques for efficiently evaluating the state and quality of preimplantation embryos using time-lapse imaging systems have been applied. Artificial intelligence programs based on deep learning technology and big data analysis of time-lapse monitoring system during in vitro culture of preimplantation embryos have also been rapidly developed. In addition, several molecular markers of the secretome have been successfully analyzed in spent embryo culture media, which could easily be obtained during in vitro embryo culture. It is also possible to analyze small amounts of cell-free nucleic acids, mitochondrial nucleic acids, miRNA, and long non-coding RNA derived from embryos using real-time polymerase chain reaction (PCR) or digital PCR, as well as next-generation sequencing. Various efforts are being made to use non-invasive evaluation of embryo quality (NiEEQ) to select the embryo with the best developmental competence. However, each NiEEQ method has some limitations that should be evaluated case by case. Therefore, an integrated analysis strategy fusing several NiEEQ methods should be urgently developed and confirmed by proper clinical trials.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Obstetrics and Gynaecology, Seoul Medical Center, Seoul, Republic of Korea
| | - Jaewang Lee
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, Republic of Korea
| | - Jin Hyun Jun
- Department of Biomedical Laboratory Science, College of Health Science, Eulji University, Seongnam, Republic of Korea
- Department of Senior Healthcare, Graduate School, Eulji University, Seongnam, Republic of Korea
| |
Collapse
|
3
|
Abu Raya YS, Srebnik N, Rubinstein E, Schonberger O, Broza YY, Suschinel R, Haick H, Ionescu R. Noninvasive Pregestational Genetic Testing of Embryos Using Smart Sensors Array. ACS Sens 2022; 7:3265-3271. [PMID: 36374562 DOI: 10.1021/acssensors.2c01492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pregestational genetic testing of embryos is the conventional tool in detecting genetic disorders (fetal aneuploidy and monogenic disorders) for in vitro fertilization (IVF) procedures. The accepted clinical practice for genetic testing still depends on biopsy, which has the potential to harm the embryo. Noninvasive genetic prenatal testing has not yet been achieved. In this study, embryos with common genetic disorders created through IVF were tested with an artificially intelligent nanosensor array. Volatile organic compounds emitted by the culture fluid of embryos were analyzed with chemical gas sensors. The obtained results showed significant discrimination between the embryos with different genetic diseases and their wild-types. Embryos were obtained from the same clinical center for avoiding differences based on clinical and demographical characteristics. The achieved discrimination accuracy was 81% for PKD disease, 90% for FRAX disease, 85% for HOCM disease, 90% for BRCA disease, and 100% for HSCR disease. These proof-of-concept findings might launch the development of a noninvasive approach for early assessment of embryos by examining the culture fluid of the embryos, potentially enabling noninvasive diagnosis and screening of genetic diseases for IVF.
Collapse
Affiliation(s)
- Yasmin Shibli Abu Raya
- Department of Chemical Engineering and Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Naama Srebnik
- In Vitro Fertilization Unit, Shaare Zedek Medical Center, Hebrew University Medical School, 9112102 Jerusalem, Israel
| | - Esther Rubinstein
- In Vitro Fertilization Unit, Shaare Zedek Medical Center, Hebrew University Medical School, 9112102 Jerusalem, Israel
| | - Oshrat Schonberger
- In Vitro Fertilization Unit, Shaare Zedek Medical Center, Hebrew University Medical School, 9112102 Jerusalem, Israel
| | - Yoav Y Broza
- Department of Chemical Engineering and Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Raluca Suschinel
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Hossam Haick
- Department of Chemical Engineering and Russel Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - Radu Ionescu
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| |
Collapse
|