1
|
Wang D, Li Y, Chang W, Feng M, Yang Y, Zhu X, Liu Z, Fu Y. CircSEC24B activates autophagy and induces chemoresistance of colorectal cancer via OTUB1-mediated deubiquitination of SRPX2. Cell Death Dis 2024; 15:693. [PMID: 39333496 PMCID: PMC11436887 DOI: 10.1038/s41419-024-07057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/29/2024]
Abstract
Circular RNAs (circRNAs) are a type of regulatory RNA that feature covalently closed single-stranded loops. Evidence suggested that circRNAs play important roles in the progression and development of various cancers. However, the impact of circRNA on autophagy-mediated progression of colorectal cancer (CRC) remains unclear. The objective of this project was to investigate the influence of circSEC24B on autophagy and its underlying mechanisms in CRC. To validate the presence and circular structure of circSEC24B in CRC cells and tissues, PCR and Sanger sequencing techniques were employed. Drug resistance and invasive phenotype of CRC cells were evaluated using CCK8, transwell, and Edu assays. Gain- and loss-of-function experiments were conducted to assess the effects of circSEC24B and its protein partner on the growth, invasion, and metastasis of CRC cells in vitro and in vivo. Interactions between circSEC24B, OTUB1, and SRPX2 were analyzed through immunofluorescence, RNA-pulldown, and RIP assays. Mass spectrometry analysis was used to identify potential binding proteins of circRNA in CRC cells. Vectors were constructed to investigate the specific structural domain of the deubiquitinating enzyme OTUB1 that binds to circSEC24B. Results showed that circSEC24B expression was increased in CRC tissues and cell lines, and it enhanced CRC cell proliferation and autophagy levels. Mechanistically, circSEC24B promoted CRC cell proliferation by regulating the protein stability of SRPX2. Specifically, circSEC24B acted as a scaffold, facilitating the binding of OTUB1 to SRPX2 and thereby enhancing its protein stability. Additionally, evidence suggested that OTUB1 regulated SRPX2 expression through an acetylation-dependent mechanism. In conclusion, this study demonstrated that circSEC24B activated autophagy and induced chemoresistance in CRC by promoting the deubiquitination of SRPX2, mediated by the deubiquitinating enzyme OTUB1.
Collapse
Affiliation(s)
- Di Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongge Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weilong Chang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meina Feng
- Department of Neurology, Wuhan Brain Hospital, General Hospital of the YANGTZE River Shipping, Wuhan, China
| | - Yiming Yang
- Department of General Surgery, Ruijin-Hainan Hospital, Shanghai Jiao Tong University School of Medicine, Hainan, China
| | - Xiuxiang Zhu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhibo Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Wang L, Li J, Jiang M, Luo Y, Xu X, Li J, Pan Y, Zhang H, Xiao ZXJ, Wang Y. SIRT1 Stabilizes β-TrCP1 to Inhibit Snail1 Expression in Maintaining Intestinal Epithelial Integrity to Alleviate Colitis. Cell Mol Gastroenterol Hepatol 2024; 18:101354. [PMID: 38729522 PMCID: PMC11227028 DOI: 10.1016/j.jcmgh.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND & AIMS Dysfunction of the intestinal epithelial barrier comprising the junctional complex of tight junctions and adherent junctions leads to increased intestinal permeability, which is a major cause of uncontrolled inflammation related to inflammatory bowel disease (IBD). The NAD+-dependent deacetylase SIRT1 is implicated in inflammation and the pathologic process of IBD. We aimed to elucidate the protective role and underlying mechanism of SIRT1 in cell-cell junction and intestinal epithelial integrity. METHODS The correlation of SIRT1 expression and human IBD was analyzed by GEO or immunohistochemical analyses. BK5.mSIRT1 transgenic mice and wild-type mice were given dextran sodium sulfate (DSS) and the manifestation of colitis-related phenotypes was analyzed. Intestinal permeability was measured by FITC-dextran and cytokines expression was analyzed by quantitative polymerase chain reaction. The expression of the cell junction-related proteins in DSS-treated or SIRT1-knockdown Caco2 or HCT116 cells was analyzed by Western blotting. The effects of nicotinamide mononucleotide in DSS-induced mice colitis were investigated. Correlations of the SIRT1-β-TrCP1-Snail1-Occludin/Claudin-1/E-cadherin pathway with human IBD samples were analyzed. RESULTS Reduced SIRT1 expression is associated with human IBD specimens. SIRT1 transgenic mice exhibit much-reduced manifestations of DSS-induced colitis. The activation of SIRT1 by nicotinamide mononucleotide bolsters intestinal epithelial barrier function and ameliorates DSS-induced colitis in mice. Mechanistically, DSS downregulates SiRT1 expression, leading to destabilization of β-TrCP1 and upregulation of Snail1, accompanied by reduced expression of E-cadherin, Occludin, and Claudin-1, consequently resulting in increased epithelial permeability and inflammation. The deregulated SIRT1-β-TrCP1-Snail1-Occludin/Claudin-1/E-cadherin pathway correlates with human IBD. CONCLUSIONS SIRT1 is pivotal in maintaining the intestinal epithelial barrier integrity via modulation of the β-TrCP1-Snail1-E-cadhein/Occludin/Claudin-1 pathway.
Collapse
Affiliation(s)
- Liang Wang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China; Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinsong Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mingshan Jiang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Luo
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaoke Xu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Juan Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Pan
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Yang J, Song C, Zhan X. The role of protein acetylation in carcinogenesis and targeted drug discovery. Front Endocrinol (Lausanne) 2022; 13:972312. [PMID: 36171897 PMCID: PMC9510633 DOI: 10.3389/fendo.2022.972312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/23/2022] [Indexed: 12/01/2022] Open
Abstract
Protein acetylation is a reversible post-translational modification, and is involved in many biological processes in cells, such as transcriptional regulation, DNA damage repair, and energy metabolism, which is an important molecular event and is associated with a wide range of diseases such as cancers. Protein acetylation is dynamically regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) in homeostasis. The abnormal acetylation level might lead to the occurrence and deterioration of a cancer, and is closely related to various pathophysiological characteristics of a cancer, such as malignant phenotypes, and promotes cancer cells to adapt to tumor microenvironment. Therapeutic modalities targeting protein acetylation are a potential therapeutic strategy. This article discussed the roles of protein acetylation in tumor pathology and therapeutic drugs targeting protein acetylation, which offers the contributions of protein acetylation in clarification of carcinogenesis, and discovery of therapeutic drugs for cancers, and lays the foundation for precision medicine in oncology.
Collapse
Affiliation(s)
- Jingru Yang
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Cong Song
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| |
Collapse
|