1
|
Liu X, Shen Q, Zhang S. Cross-species cell-type assignment from single-cell RNA-seq data by a heterogeneous graph neural network. Genome Res 2023; 33:96-111. [PMID: 36526433 PMCID: PMC9977153 DOI: 10.1101/gr.276868.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Cross-species comparative analyses of single-cell RNA sequencing (scRNA-seq) data allow us to explore, at single-cell resolution, the origins of the cellular diversity and evolutionary mechanisms that shape cellular form and function. Cell-type assignment is a crucial step to achieve that. However, the poorly annotated genome and limited known biomarkers hinder us from assigning cell identities for nonmodel species. Here, we design a heterogeneous graph neural network model, CAME, to learn aligned and interpretable cell and gene embeddings for cross-species cell-type assignment and gene module extraction from scRNA-seq data. CAME achieves significant improvements in cell-type characterization across distant species owing to the utilization of non-one-to-one homologous gene mapping ignored by early methods. Our large-scale benchmarking study shows that CAME significantly outperforms five classical methods in terms of cell-type assignment and model robustness to insufficiency and inconsistency of sequencing depths. CAME can transfer the major cell types and interneuron subtypes of human brains to mouse and discover shared cell-type-specific functions in homologous gene modules. CAME can align the trajectories of human and macaque spermatogenesis and reveal their conservative expression dynamics. In short, CAME can make accurate cross-species cell-type assignments even for nonmodel species and uncover shared and divergent characteristics between two species from scRNA-seq data.
Collapse
Affiliation(s)
- Xingyan Liu
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qunlun Shen
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihua Zhang
- NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China;,School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China;,Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Wang S, Ding P, Yuan J, Wang H, Zhang X, Chen D, Ma D, Zhang X, Wang F. Integrative cross-species analysis of GABAergic neuron cell types and their functions in Alzheimer's disease. Sci Rep 2022; 12:19358. [PMID: 36369318 PMCID: PMC9652313 DOI: 10.1038/s41598-022-21496-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the phenotypic and functional diversity of cerebral cortical GABAergic neurons requires a comprehensive analysis of key transcriptional signatures and neuronal subtype identity. However, the diversity and conservation of GABAergic neurons across multiple mammals remain unclear. Here, we collected the single-nucleus RNA sequencing (snRNA-seq) datasets of cerebral cortex from human, macaque, mouse, and pig to identify the conserved neuronal cell types across species. After systematic analysis of the heterogeneity of GABAergic neurons, we defined four major conserved GABAergic neuron subclasses (Inc SST, Inc LAMP5, Inc PVALB, and Inc VIP) across species. We characterized the species-enriched subclasses of GABAergic neurons from four mammals, such as Inc Meis2 in mouse. Then, we depicted the genetic regulatory network (GRNs) of GABAergic neuron subclasses, which showed the conserved and species-specific GRNs for GABAergic neuron cell types. Finally, we investigated the GABAergic neuron subclass-specific expression modules of Alzheimer's disease (AD)-related genes in GABAergic neuron cell types. Overall, our study reveals the conserved and divergent GABAergic neuron subclasses and GRNs across multiple species and unravels the gene expression modules of AD-risk genes in GABAergic neuron subclasses, facilitating the GABAergic neurons research and clinical treatment.
Collapse
Affiliation(s)
- Shiyou Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Peiwen Ding
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Jingnan Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Haoyu Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xiuqing Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Dongli Ma
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Xingliang Zhang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, 518038, China.
- Department of Pediatrics, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Fei Wang
- BGI-Shenzhen, Shenzhen, 518083, China.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|