1
|
Tan Y, Huang Z, Jin Y, Wang J, Fan H, Liu Y, Zhang L, Wu Y, Liu P, Li T, Ran J, Tian H, Lam SM, Liu M, Zhou J, Yang Y. Lipid droplets sequester palmitic acid to disrupt endothelial ciliation and exacerbate atherosclerosis in male mice. Nat Commun 2024; 15:8273. [PMID: 39333556 PMCID: PMC11437155 DOI: 10.1038/s41467-024-52621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Disruption of ciliary homeostasis in vascular endothelial cells has been implicated in the development of atherosclerosis. However, the molecular basis for the regulation of endothelial cilia during atherosclerosis remains poorly understood. Herein, we provide evidence in male mice that the accumulation of lipid droplets in vascular endothelial cells induces ciliary loss and contributes to atherosclerosis. Triglyceride accumulation in vascular endothelial cells differentially affects the abundance of free fatty acid species in the cytosol, leading to stimulated lipid droplet formation and suppressed protein S-palmitoylation. Reduced S-palmitoylation of ciliary proteins, including ADP ribosylation factor like GTPase 13B, results in the loss of cilia. Restoring palmitic acid availability, either through pharmacological inhibition of stearoyl-CoA desaturase 1 or a palmitic acid-enriched diet, significantly restores endothelial cilia and mitigates the progression of atherosclerosis. These findings thus uncover a previously unrecognized role of lipid droplets in regulating ciliary homeostasis and provide a feasible intervention strategy for preventing and treating atherosclerosis.
Collapse
Affiliation(s)
- Yanjie Tan
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Zhenzhou Huang
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Yi Jin
- Metabolism and Disease Research Centre, Central Hospital Affiliated to Shandong First Medical University, 250013, Jinan, China
| | - Jiaying Wang
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Hongjun Fan
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Yangyang Liu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Liang Zhang
- Metabolism and Disease Research Centre, Central Hospital Affiliated to Shandong First Medical University, 250013, Jinan, China
| | - Yue Wu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Peiwei Liu
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Tianliang Li
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - Jie Ran
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- LipidALL Technologies Company Limited, 213022, Changzhou, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, 300462, Tianjin, China
| | - Jun Zhou
- Center for Cell Structure and Function, Haihe Laboratory of Cell Ecosystem, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, 250014, Jinan, China.
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| | - Yunfan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250012, Jinan, China.
| |
Collapse
|
2
|
Jiang L, Yang S, Deng L, Luo J, Zhang X, Chen S, Dong Z. ARL13B promotes cell cycle through the sonic hedgehog signaling pathway to alleviate nerve damage during cerebral ischemia/reperfusion in rats. Biochem Pharmacol 2024; 227:116446. [PMID: 39038552 DOI: 10.1016/j.bcp.2024.116446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Cerebral ischemia/reperfusion (CIRI) is a leading cause of death worldwide. A small GTPase known as ADP-ribosylation factor-like protein 13B (ARL13B) is essential in several illnesses. The role of ARL13B in CIRI remains unknown, though. A middle cerebral artery occlusion/reperfusion (MCAO/R) in rats as well as an oxygen-glucose deprivation/reoxygenation (OGD/R) models in PC12 cells were constructed. The neuroprotective effects of ARL13B against MCAO/R were evaluated using neurological scores, TTC staining, rotarod testing, H&E staining, and Nissl staining. To detect the expression of proteins associated with the SHH pathway and apoptosis, western blotting and immunofluorescence were employed. Apoptosis was detected using TUNEL assays and flow cytometry. There was increased expression of ARL13B in cerebral ischemia/reperfusion models. However, ARL13B knockdown aggravated CIRI nerve injury by inhibiting the sonic hedgehog (SHH) pathway. In addition, the use of SHH pathway agonist (SAG) can increased ARL13B expression, reverse the effects of ARL13B knockdown exacerbating CIRI nerve injury. ARL13B alleviated cerebral infarction and pathological injury and played a protective role against MCAO/R. Furthermore, ARL13B significantly increased the expression of SHH pathway-related proteins and the anti-apoptotic protein BCL-2, while decreased the expression of pro-apoptotic protein BAX, thus reducing apoptosis. The results from the OGD/R model in PC12 cells were consistent with those obtained in vivo. Surprisingly, we demonstrated that ARL13B regulates the cell cycle to protect against CIRI nerve injury. Our findings indicate that ARL13B protects against CIRI by reducing apoptosis through SHH-dependent pathway activation, and suggest that ARL13B plays a crucial role in CIRI pathogenesis.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Shaonan Yang
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Ling Deng
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Jingjing Luo
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Xiaoling Zhang
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Sha Chen
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Zhi Dong
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China.
| |
Collapse
|
3
|
Li T, Liu M, Yu F, Yang S, Bu W, Liu K, Yang J, Ni H, Yang M, Yin H, Hong R, Li D, Zhao H, Zhou J. Pathologically relevant aldoses and environmental aldehydes cause cilium disassembly via formyl group-mediated mechanisms. J Mol Cell Biol 2024; 16:mjad079. [PMID: 38059869 PMCID: PMC11245732 DOI: 10.1093/jmcb/mjad079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023] Open
Abstract
Carbohydrate metabolism disorders (CMDs), such as diabetes, galactosemia, and mannosidosis, cause ciliopathy-like multiorgan defects. However, the mechanistic link of cilia to CMD complications is still poorly understood. Herein, we describe significant cilium disassembly upon treatment of cells with pathologically relevant aldoses rather than the corresponding sugar alcohols. Moreover, environmental aldehydes are able to trigger cilium disassembly by the steric hindrance effect of their formyl groups. Mechanistic studies reveal that aldehydes stimulate extracellular calcium influx across the plasma membrane, which subsequently activates the calmodulin-Aurora A-histone deacetylase 6 pathway to deacetylate axonemal microtubules and triggers cilium disassembly. In vivo experiments further show that Hdac6 knockout mice are resistant to aldehyde-induced disassembly of tracheal cilia and sperm flagella. These findings reveal a previously unrecognized role for formyl group-mediated cilium disassembly in the complications of CMDs.
Collapse
Affiliation(s)
- Te Li
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, Tianjin 300462, China
| | - Fan Yu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Song Yang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weiwen Bu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kai Liu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jia Yang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hua Ni
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mulin Yang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hanxiao Yin
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Renjie Hong
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dengwen Li
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
4
|
Ni H, Li L, Hu D, Yang M, Wang D, Ma H, Bu W, Yang J, Zhu LE, Zhai D, Song T, Yang S, Lu Q, Li D, Ran J, Liu M. Dynamic changes of endothelial and stromal cilia are required for the maintenance of corneal homeostasis. J Cell Physiol 2024; 239:e31215. [PMID: 38308657 DOI: 10.1002/jcp.31215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Primary cilia are distributed extensively within the corneal epithelium and endothelium. However, the presence of cilia in the corneal stroma and the dynamic changes and roles of endothelial and stromal cilia in corneal homeostasis remain largely unknown. Here, we present compelling evidence for the presence of primary cilia in the corneal stroma, both in vivo and in vitro. We also demonstrate dynamic changes of both endothelial and stromal cilia during corneal development. In addition, our data show that cryoinjury triggers dramatic cilium formation in the corneal endothelium and stroma. Furthermore, depletion of cilia in mutant mice lacking intraflagellar transport protein 88 compromises the corneal endothelial capacity to establish the effective tissue barrier, leading to an upregulation of α-smooth muscle actin within the corneal stroma in response to cryoinjury. These observations underscore the essential involvement of corneal endothelial and stromal cilia in maintaining corneal homeostasis and provide an innovative strategy for the treatment of corneal injuries and diseases.
Collapse
Affiliation(s)
- Hua Ni
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Lamei Li
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Die Hu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mulin Yang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Difei Wang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongbo Ma
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weiwen Bu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jia Yang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Li-E Zhu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Denghui Zhai
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ting Song
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Song Yang
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Quanlong Lu
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- Department of Genetics and Cell Biology, Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, Tianjin, China
| |
Collapse
|
5
|
Wu Y, Ma Y. CCL2-CCR2 signaling axis in obesity and metabolic diseases. J Cell Physiol 2024; 239:e31192. [PMID: 38284280 DOI: 10.1002/jcp.31192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/10/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
Obesity and metabolic diseases, such as insulin resistance, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments, represent formidable global health challenges, bearing considerable implications for both morbidity and mortality rates. It has become increasingly evident that chronic, low-grade inflammation plays a pivotal role in the genesis and advancement of these conditions. The involvement of C-C chemokine ligand 2 (CCL2) and its corresponding receptor, C-C chemokine receptor 2 (CCR2), has been extensively documented in numerous inflammatory maladies. Recent evidence indicates that the CCL2/CCR2 pathway extends beyond immune cell recruitment and inflammation, exerting a notable influence on the genesis and progression of metabolic syndrome. The present review seeks to furnish a comprehensive exposition of the CCL2-CCR2 signaling axis within the context of obesity and metabolic disorders, elucidating its molecular mechanisms, functional roles, and therapeutic implications.
Collapse
Affiliation(s)
- Yue Wu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yanchun Ma
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
6
|
Li L, Ran J. Regulation of ciliary homeostasis by intraflagellar transport-independent kinesins. Cell Death Dis 2024; 15:47. [PMID: 38218748 PMCID: PMC10787775 DOI: 10.1038/s41419-024-06428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
Cilia are highly conserved eukaryotic organelles that protrude from the cell surface and are involved in sensory perception, motility, and signaling. Their proper assembly and function rely on the bidirectional intraflagellar transport (IFT) system, which involves motor proteins, including antegrade kinesins and retrograde dynein. Although the role of IFT-mediated transport in cilia has been extensively studied, recent research has highlighted the contribution of IFT-independent kinesins in ciliary processes. The coordinated activities and interplay between IFT kinesins and IFT-independent kinesins are crucial for maintaining ciliary homeostasis. In this comprehensive review, we aim to delve into the specific contributions and mechanisms of action of the IFT-independent kinesins in cilia. By shedding light on their involvement, we hope to gain a more holistic perspective on ciliogenesis and ciliopathies.
Collapse
Affiliation(s)
- Lin Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jie Ran
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
7
|
Hong R, Tian X, Ma H, Ni H, Yang J, Bu W, Li T, Yang S, Li D, Liu M, Tan Y. Primary cilium-mediated signaling cascade suppresses age-related biliary fibrosis. J Cell Physiol 2023; 238:2600-2611. [PMID: 37683035 DOI: 10.1002/jcp.31113] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023]
Abstract
The primary cilium is increasingly recognized as a crucial player in the physiology of biliary epithelial cells (BECs). However, the precise role of primary cilia in the development of age-related biliary fibrosis remains unclear. Herein, using cilium-deficient mice, we demonstrate that disruption of ciliary homeostasis in BECs in aged mice leads to significant bile duct proliferation, augmented biliary fibrosis, and heightened indicators of liver injury. Our RNA-sequencing data revealed a dysregulation in genes associated with various biological processes such as bile secretion, fatty acid metabolism, and inflammation. Loss of primary cilia also significantly enhanced signaling pathways driving the development of biliary fibrosis. Our findings collectively suggest that loss of primary cilia in the BECs of aged mice initiates a cascade of signaling events that contribute to biliary fibrosis, highlighting the primary cilium as a potential therapeutic target in the treatment of fibrosing cholangiopathies.
Collapse
Affiliation(s)
- Renjie Hong
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoyu Tian
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hongbo Ma
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Hua Ni
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Jia Yang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Weiwen Bu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Te Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Song Yang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Min Liu
- Laboratory of Tissue Homeostasis, Haihe Laboratory of Cell Ecosystem, Tianjin, China
| | - Yanjie Tan
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
8
|
Hart NR. A theoretical model of dietary lipid variance as the origin of primary ciliary dysfunction in preeclampsia. Front Mol Biosci 2023; 10:1173030. [PMID: 37251083 PMCID: PMC10210153 DOI: 10.3389/fmolb.2023.1173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Serving as the cell's key interface in communicating with the outside world, primary cilia have emerged as an area of multidisciplinary research interest over the last 2 decades. Although the term "ciliopathy" was first used to describe abnormal cilia caused by gene mutations, recent studies focus on abnormalities of cilia that are found in diseases without clear genetic antecedents, such as obesity, diabetes, cancer, and cardiovascular disease. Preeclampsia, a hypertensive disease of pregnancy, is intensely studied as a model for cardiovascular disease partially due to many shared pathophysiologic elements, but also because changes that develop over decades in cardiovascular disease arise in days with preeclampsia yet resolve rapidly after delivery, thus providing a time-lapse view of the development of cardiovascular pathology. As with genetic primary ciliopathies, preeclampsia affects multiple organ systems. While aspirin delays the onset of preeclampsia, there is no cure other than delivery. The primary etiology of preeclampsia is unknown; however, recent reviews emphasize the fundamental role of abnormal placentation. During normal embryonic development, trophoblastic cells, which arise from the outer layer of the 4-day-old blastocyst, invade the maternal endometrium and establish extensive placental vascular connections between mother and fetus. In primary cilia of trophoblasts, Hedgehog and Wnt/catenin signaling operate upstream of vascular endothelial growth factor to advance placental angiogenesis in a process that is promoted by accessible membrane cholesterol. In preeclampsia, impaired proangiogenic signaling combined with an increase in apoptotic signaling results in shallow invasion and inadequate placental function. Recent studies show primary cilia in preeclampsia to be fewer in number and shortened with functional signaling abnormalities. Presented here is a model that integrates preeclampsia lipidomics and physiology with the molecular mechanisms of liquid-liquid phase separation in model membrane studies and the known changes in human dietary lipids over the last century to explain how changes in dietary lipids might reduce accessible membrane cholesterol and give rise to shortened cilia and defects in angiogenic signaling, which underlie placental dysfunction of preeclampsia. This model offers a possible mechanism for non-genetic dysfunction in cilia and proposes a proof-of-concept study to treat preeclampsia with dietary lipids.
Collapse
|
9
|
Yin H, Hu M, Li D. Regulation of epidermal stratification and development by basal keratinocytes. J Cell Physiol 2023; 238:742-748. [PMID: 36815398 DOI: 10.1002/jcp.30978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/23/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
The epidermis is a stratified squamous epithelium distributed in the outermost layer of the skin and is intimately involved in the formation of a physical barrier to pathogens. Basal keratinocytes possess the properties of stem cells and play an essential role in epidermal development and skin damage recovery. Therefore, understanding the molecular mechanism of how basal keratinocytes participate in epidermal development and stratification is vital for preventing and treating skin lesions. During epidermal morphogenesis, the symmetric division of basal keratinocytes contributes to the extension of skin tissues, while their asymmetric division and migration facilitate epidermal stratification. In this review, we summarize the process of epidermal stratification and illustrate the molecular mechanisms underlying epidermal morphogenesis. Furthermore, we discuss the coordination of multiple signaling pathways and transcription factors in epidermal stratification, together with the roles of cell polarity and cell dynamics during the process.
Collapse
Affiliation(s)
- Hanxiao Yin
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingzheng Hu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|