1
|
Ji H, Guo L, Yu D, Du X. Application of microorganisms in Panax ginseng: cultivation of plants, and biotransformation and bioactivity of key component ginsenosides. Arch Microbiol 2024; 206:433. [PMID: 39412649 DOI: 10.1007/s00203-024-04144-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 11/10/2024]
Abstract
Panax ginseng is a precious Chinese medicinal plant with a long growth cycle and high medicinal value. Therefore, it is of great significance to explore effective ways to increase its yield and main active substance content to reduce the cost of ginseng, which is widely used in food and clinical applications. Here, we review the key roles of microorganisms in the biological control of ginseng diseases, enhancement of ginseng yield, biotransformation of ginsenosides, and augmentation of ginsenoside bioactivity. The application of microorganisms in P. ginseng faces multiple challenges, including the need for further exploration of efficient microbial strain resources used in the cultivation of ginseng and biotransformation of ginsenosides, lack of microbial application in large-scale field cultivation of ginseng, and unclear mechanism of microbial transformation of ginsenosides. This review provides a deeper understanding of the applications of microorganisms in P. ginseng.
Collapse
Affiliation(s)
- Hongyu Ji
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China
| | - Lidong Guo
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China
| | - Dan Yu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China
| | - Xiaowei Du
- College of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24 Heping Road, Harbin, Heilongjiang Province, 150040, China.
| |
Collapse
|
2
|
Kim HW, Kim DH, Ryu B, Chung YJ, Lee K, Kim YC, Lee JW, Kim DH, Jang W, Cho W, Shim H, Sung SH, Yang TJ, Kang KB. Mass spectrometry-based ginsenoside profiling: Recent applications, limitations, and perspectives. J Ginseng Res 2024; 48:149-162. [PMID: 38465223 PMCID: PMC10920005 DOI: 10.1016/j.jgr.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 03/12/2024] Open
Abstract
Ginseng, the roots of Panax species, is an important medicinal herb used as a tonic. As ginsenosides are key bioactive components of ginseng, holistic chemical profiling of them has provided many insights into understanding ginseng. Mass spectrometry has been a major methodology for profiling, which has been applied to realize numerous goals in ginseng research, such as the discrimination of different species, geographical origins, and ages, and the monitoring of processing and biotransformation. This review summarizes the various applications of ginsenoside profiling in ginseng research over the last three decades that have contributed to expanding our understanding of ginseng. However, we also note that most of the studies overlooked a crucial factor that influences the levels of ginsenosides: genetic variation. To highlight the effects of genetic variation on the chemical contents, we present our results of untargeted and targeted ginsenoside profiling of different genotypes cultivated under identical conditions, in addition to data regarding genome-level genetic diversity. Additionally, we analyze the other limitations of previous studies, such as imperfect variable control, deficient metadata, and lack of additional effort to validate causation. We conclude that the values of ginsenoside profiling studies can be enhanced by overcoming such limitations, as well as by integrating with other -omics techniques.
Collapse
Affiliation(s)
- Hyun Woo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Dae Hyun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Byeol Ryu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - You Jin Chung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kyungha Lee
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul, Republic of Korea
| | - Young Chang Kim
- Future Agriculture Strategy Team, Research Policy Bureau, Rural Development Administration, Jeonju, Republic of Korea
| | - Jung Woo Lee
- Ginseng Division, Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Dong Hwi Kim
- Ginseng Division, Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration, Eumseong, Republic of Korea
| | - Woojong Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Republic of Korea
| | - Woohyeon Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyeonah Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Hyun Sung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyo Bin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Wang X, Liu Y, Kang N, Xu G. Wide identification of chemical constituents in fermented licorice and explore its efficacy of anti-neurodegeneration by combining quasi-targeted metabolomics and in-depth bioinformatics. Front Neurosci 2023; 17:1156037. [PMID: 37274217 PMCID: PMC10234426 DOI: 10.3389/fnins.2023.1156037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 06/06/2023] Open
Abstract
Licorice (Gan-Cao in Chinese) is one of the most famous herbal medicines around the world. The fermentation of probiotics and herbs can change the chemical constituents and significantly improve the efficacy. However, it is still unknown whether licorice fermented with probiotics would produce beneficial therapeutic effects. This study aimed to comprehensively analyze the chemical constituents in fermented licorice via quasi-targeted metabolomics, predict the potential efficacy of fermentation products via diverse bioinformatic methods, and further verify the efficacy of fermentation products through in vitro and in vivo experiments. As a result, 1,435 compounds were identified totally. Among them, 424 natural medicinal products were classified with potentially important bioactivities, including 11 anthocyanins, 10 chalcones and dihydrochalcones, 25 flavanones, 45 flavones and flavonols, 117 flavonoids, 34 isoflavonoids, 21 phenols and its derivatives, 20 phenylpropanoids and polyketides, 96 terpenoids and 25 coumarins and derivatives. Interestingly, bioinformatic prediction showed that the targets of some important compounds were related to neurodegeneration, oxidoreductase activity and response to stress. In vitro and in vivo tests further verified that fermented licorice had excellent effects of DPPH clearance, anti-oxidation, anti-neurodegeneration, and anti-stress. Thus, this study would provide a reference method for related research and the development of fermented licorice-related products.
Collapse
|
4
|
Chen X, Chen Y, Xie S, Wang X, Wu Y, Zhang H, Zhao Y, Jia J, Wang B, Li W, Tang J, Xiao X. The mechanism of Renshen-Fuzi herb pair for treating heart failure-Integrating a cardiovascular pharmacological assessment with serum metabolomics. Front Pharmacol 2022; 13:995796. [PMID: 36545315 PMCID: PMC9760753 DOI: 10.3389/fphar.2022.995796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022] Open
Abstract
Background: Renshen-Fuzi herb pair (RS-FZ) is often used in the clinical treatment of heart failure (HF) and has a remarkable therapeutic effect. However, the mechanism of RS-FZ for treating HF remains unclear. In our study, we explored the mechanism of RS-FZ for treating HF. Methods: Evaluation of RS-FZ efficacy by cardiovascular pharmacology. Moreover, Global metabolomics profiling of the serum was detected by UPLC-QTOF/MS. Multivariate statistics analyzed the specific serum metabolites and corresponding metabolic pathways. Combining serum metabolomics with network pharmacology, animal experiments screened and validated the critical targets of RS-FZ intervention in HF. Results: RS-FZ significantly ameliorated myocardial fibrosis, enhanced cardiac function, and reduced the serum HF marker (brain natriuretic peptide) level in rats with HF. Through topological analysis of the "Metabolite-Target-Component" interaction network, we found that 79 compounds of RS-FZ directly regulated the downstream specific serum metabolites by acting on four critical target proteins (CYP2D6, EPHX2, MAOB, and ENPP2). The immunohistochemistry results showed that RS-FZ observably improved the expression of CYP2D6 and ENPP2 proteins while decreasing the expression of EPHX2 and MAOB proteins dramatically. Conclusion: The integrated cardiovascular pharmacological assessment with serum metabolomics revealed that RS-FZ plays a crucial role in the treatment of HF by intervening in CYP2D6, EPHX2, MAOB, and ENPP2 target proteins. It provides a theoretical basis for RS-FZ for treating HF.
Collapse
Affiliation(s)
- Xiaofei Chen
- College of Medicine, Chengdu University of Chinese Medicine, Chengdu, China,Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yulong Chen
- College of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shiyang Xie
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoyan Wang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yali Wu
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hui Zhang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ya Zhao
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jinhao Jia
- College of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Bin Wang
- College of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Weixia Li
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,*Correspondence: Weixia Li, ; Jinfa Tang, ; Xiaohe Xiao,
| | - Jinfa Tang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Henan Province Engineering Research Center for Clinical Application, Evaluation and Transformation of Traditional Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China,*Correspondence: Weixia Li, ; Jinfa Tang, ; Xiaohe Xiao,
| | - Xiaohe Xiao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China,*Correspondence: Weixia Li, ; Jinfa Tang, ; Xiaohe Xiao,
| |
Collapse
|
5
|
Li X, Liang S, Tan CH, Cao S, Xu X, Er Saw P, Tao W. Nanocarriers in the Enhancement of Therapeutic Efficacy of Natural Drugs. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2020-0040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract Since time immemorial, plant derived natural products have been used for the treatment of various human diseases before the intervention of modern medicine. The basis of modern medicine is still being inspired from traditional medicine and therapies. However, despite
their tremendous therapeutic potential, these natural drugs often have poor bioavailability, metabolic instability, and aqueous insolubility. These factors greatly impede a natural drug’s commercialization potential as a mainstream medicine. Therefore, the development of nanocarrier
drug delivery systems is indispensable in overcoming the various constraints of the bottlenecks which occur with natural drugs. Of particular interest in this review are four plant materials endogenous to China with the common names of barrenwort or horny goat weed (Epimedium), Shu
Di Huang (Rehmannia glutinosa, RG), ginseng (Panax ginseng), and Dong Quai or female ginseng (Angelica sinensis, AS), each having been scientifically investigated for a wide range of therapeutic uses as has been originally discovered from the long history of traditional
usage and anecdotal information by local population groups in Asia. The integration of natural drugs from the East and nanocarrier drug delivery systems developed from the West is paving the way towards further accurate and efficient medicine therapy. We further discuss the potential benefits
of these plants and the enhancement of their therapeutic efficacy by nanotechnology intervention.
Collapse
Affiliation(s)
- Xiuling Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shunung Liang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510004, China
| | - Chee Hwee Tan
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510004, China
| | - Shuwen Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Wei Tao
- Center for Nanomedicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
Low Molecular Weight Oligosaccharide from Panax ginseng C.A. Meyer against UV-Mediated Apoptosis and Inhibits Tyrosinase Activity In Vitro and In Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8879836. [PMID: 33727947 PMCID: PMC7935584 DOI: 10.1155/2021/8879836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/17/2020] [Accepted: 01/31/2021] [Indexed: 11/17/2022]
Abstract
To find new anti-UV and whitening agents, 21 fractions isolated from three preparations of ginseng (white, red, and black ginseng) were screened, and their antioxidant effects on AAPH- or H2O2-induced damage were investigated. Furthermore, the protective effect against UV-mediated apoptosis and the tyrosinase inhibitory activity of the targeted fractions were evaluated in vitro and in a zebrafish model. Among all fractions, F10 from white ginseng was selected as having the strongest anti-UV and antimelanogenesis activities. This fraction exhibited excellent inhibitory effects on the pigmentation of zebrafish, which may be due to its potential tyrosinase inhibitory activity. Additionally, the chemical composition of F10 was evaluated by UPLC-MS and NMR instruments. The results indicated that F10 had a carbohydrate content of more than 76%, and the weight-average molecular weight was approximately 239 Da. Disaccharide sucrose was the main active compound in F10. These results suggest that F10 could be used as an ingredient for whitening cosmetics and regarded as an anti-UV filter in the future.
Collapse
|
7
|
Yang L, Zhu Z, Qi Z, Fan X, Qian D, Zhang J, Duan J. Comparative Analysis of the Chemical Consistency Between the Traditional and Mixed Decoction of Maimendong Decoction by Ultra-Performance Liquid Chromatography Coupled to Quadrupole with Time-of-Flight Mass Spectrometry (UPLC-QTOF-MS)-Based Chemical Profiling Approach. J Chromatogr Sci 2020; 58:549-561. [PMID: 32378713 DOI: 10.1093/chromsci/bmz104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/30/2019] [Accepted: 10/31/2019] [Indexed: 01/22/2023]
Abstract
Take Maimendong Decoction (MMDD), one of the Chinese classic herbal formulas, as an object to evaluate the chemical consistency between traditional decoction and mixed decoction. The ultra-performance liquid chromatography coupled to quadrupole with time-of-flight mass spectrometry-based chemical profiling approach has been utilized. A total of 48 major peaks are detected from these two decoctions under the present chromatographic and mass spectrometry conditions. The results of negative ion mode show nine significant inconsistencies. Liquiritin, ginsenoside Ro and ginsenoside Rg5/Rk1 are detected with higher intensity in traditional preparation sample than the mixed decoction, while licoisoflavone A is higher in mixed decoction samples than the traditional one. The mechanisms involved in the chemical changes were assumed to be anti-inflammation, anti-oxidative stress and so on, suggesting these two different preparation approaches of MMDD may lead to a possibility of discrepant clinical outcomes.
Collapse
Affiliation(s)
- Lan Yang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhenhua Zhu
- Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Zhonghua Qi
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinsheng Fan
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dawei Qian
- Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jingjing Zhang
- Department of Respiratory, Nantong Hospital of Traditional Chinese Medicine, Nantong 226001, China
| | - JinAo Duan
- Jiangsu Key Laboratory for High Technology Research of Traditional Chinese Medicine Formulae Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
8
|
Zheng Y, Lee J, Lee EH, In G, Kim J, Lee MH, Lee OH, Kang IJ. A Combination of Korean Red Ginseng Extract and Glycyrrhiza glabra L. Extract Enhances Their Individual Anti-Obesity Properties in 3T3-L1 Adipocytes and C57BL/6J Obese Mice. J Med Food 2020; 23:215-223. [DOI: 10.1089/jmf.2019.4660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Yulong Zheng
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Jaesun Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Eun-hye Lee
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Gyo In
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Korea
| | - JongHan Kim
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Korea
| | - Mi-Hyang Lee
- Korea Ginseng Corporation Research Institute, Korea Ginseng Corporation, Daejeon, Korea
| | - Ok-Hwan Lee
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Il-Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| |
Collapse
|
9
|
Trace determination and characterization of ginsenosides in rat plasma through magnetic dispersive solid-phase extraction based on core-shell polydopamine-coated magnetic nanoparticles. J Pharm Anal 2019; 10:86-95. [PMID: 32123603 PMCID: PMC7037655 DOI: 10.1016/j.jpha.2019.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
Enrichment of trace bioactive constituents and metabolites from complex biological samples is challenging. This study presented a one-pot synthesis of magnetic polydopamine nanoparticles (Fe3O4@SiO2@PDA NPs) with multiple recognition sites for the magnetic dispersive solid-phase extraction (MDSPE) of ginsenosides from rat plasma treated with white ginseng. The extracted ginsenosides were characterized by combining an ultra-high-performance liquid chromatography coupled to a high-resolution mass spectrometry with supplemental UNIFI libraries. Response surface methodology was statistically used to optimize the extraction procedure of the ginsenosides. The reusability of Fe3O4@SiO2@PDA NPs was also examined and the results showed that the recovery rate exceeded 80% after recycling 6 times. Furthermore, the proposed method showed greater enrichment efficiency and could rapidly determine and characterize 23 ginsenoside prototypes and metabolites from plasma. In comparison, conventional methanol method can only detect 8 ginsenosides from the same plasma samples. The proposed approach can provide methodological reference for the trace determination and characterization of different bioactive ingredients and metabolites of traditional Chinese medicines and food. The Fe3O4@SiO2@PDA NPs were synthesized through one-pot method. The RSM was designed to promote the extraction of trace active ingredients. The MDSPE, UPLC-MS and UNIFI software were integrated into an analytical platform. The synergetic strategy was applied to enrich ginsenosides from rat plasma. The synergetic strategy provided an easy, rapid and sensitive method for analytes.
Collapse
|
10
|
Xiu Y, Li X, Sun X, Xiao D, Miao R, Zhao H, Liu S. Simultaneous determination and difference evaluation of 14 ginsenosides in Panax ginseng roots cultivated in different areas and ages by high-performance liquid chromatography coupled with triple quadrupole mass spectrometer in the multiple reaction-monitoring mode combined with multivariate statistical analysis. J Ginseng Res 2017; 43:508-516. [PMID: 31700257 PMCID: PMC6823800 DOI: 10.1016/j.jgr.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/17/2017] [Accepted: 12/01/2017] [Indexed: 11/30/2022] Open
Abstract
Background Ginsenosides are not only the principal bioactive components but also the important indexes to the quality assessment of Panax ginseng Meyer. Their contents in cultivated ginseng vary with the growth environment and age. The present study aimed at evaluating the significant difference between 36 cultivated ginseng of different cultivation areas and ages based on the simultaneously determined contents of 14 ginsenosides. Methods A high-performance liquid chromatography (HPLC) coupled with triple quadrupole mass spectrometer (MS) method was developed and used in the multiple reaction–monitoring (MRM) mode (HPLC-MRM/MS) for the quantitative analysis of ginsenosides. Multivariate statistical analysis, such as principal component analysis and partial least squares-discriminant analysis, was applied to discriminate ginseng samples of various cultivation areas and ages and to discover the differentially accumulated ginsenoside markers. Results The developed HPLC-MRM/MS method was validated to be precise, accurate, stable, sensitive, and repeatable for the simultaneous determination of 14 ginsenosides. It was found that the 3- and 5-yr-old ginseng samples were differentiated distinctly by all means of multivariate statistical analysis, whereas the 4-yr-old samples exhibited similarity to either 3- or 5-yr-old samples in the contents of ginsenosides. Among the 14 detected ginsenosides, Rg1, Rb1, Rb2, Rc, 20(S)-Rf, 20(S)-Rh1, and Rb3 were identified as potential markers for the differentiation of cultivation ages. In addition, the 5-yr-old samples were able to be classified in cultivation area based on the contents of ginsenosides, whereas the 3- and 4-yr-old samples showed little differences in cultivation area. Conclusion This study demonstrated that the HPLC-MRM/MS method combined with multivariate statistical analysis provides deep insight into the accumulation characteristics of ginsenosides and could be used to differentiate ginseng that are cultivated in different areas and ages.
Collapse
Affiliation(s)
- Yang Xiu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xue Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiuli Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Dan Xiao
- Changchun University of Technology, Changchun, China
| | - Rui Miao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Huanxi Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|