1
|
Liu Y, Mou L, Yi Z, Lin Q, Banu K, Wei C, Yu X. Integrative informatics analysis identifies that ginsenoside Re improves renal fibrosis through regulation of autophagy. J Nat Med 2024; 78:722-731. [PMID: 38683298 DOI: 10.1007/s11418-024-01800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/01/2024] [Indexed: 05/01/2024]
Abstract
We previously demonstrated that ginsenoside Re (G-Re) has protective effects on acute kidney injury. However, the underlying mechanism is still unclear. In this study, we conducted a meta-analysis and pathway enrichment analysis of all published transcriptome data to identify differentially expressed genes (DEGs) and pathways of G-Re treatment. We then performed in vitro studies to measure the identified autophagy and fibrosis markers in HK2 cells. In vivo studies were conducted using ureteric obstruction (UUO) and aristolochic acid nephropathy (AAN) models to evaluate the effects of G-Re on autophagy and kidney fibrosis. Our informatics analysis identified autophagy-related pathways enriched for G-Re treatment. Treatment with G-Re in HK2 cells reduced autophagy and mRNA levels of profibrosis markers with TGF-β stimulation. In addition, induction of autophagy with PP242 neutralized the anti-fibrotic effects of G-Re. In murine models with UUO and AAN, treatment with G-Re significantly improved renal function and reduced the upregulation of autophagy and profibrotic markers. A combination of informatics analysis and biological experiments confirmed that ginsenoside Re could improve renal fibrosis and kidney function through the regulation of autophagy. These findings provide important insights into the mechanisms of G-Re's protective effects in kidney injuries.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lingyun Mou
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Zhengzi Yi
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qisheng Lin
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Khadija Banu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chengguo Wei
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Xiaoxia Yu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Division of Nephrology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.
| |
Collapse
|
2
|
Ortega MA, Fraile-Martinez O, de Leon-Oliva D, Boaru DL, Lopez-Gonzalez L, García-Montero C, Alvarez-Mon MA, Guijarro LG, Torres-Carranza D, Saez MA, Diaz-Pedrero R, Albillos A, Alvarez-Mon M. Autophagy in Its (Proper) Context: Molecular Basis, Biological Relevance, Pharmacological Modulation, and Lifestyle Medicine. Int J Biol Sci 2024; 20:2532-2554. [PMID: 38725847 PMCID: PMC11077378 DOI: 10.7150/ijbs.95122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego de Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Diego Torres-Carranza
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Department of General and Digestive Surgery, Príncipe de Asturias Universitary Hospital, 28805 Alcala de Henares, Spain
| | - Agustin Albillos
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), Príncipe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| |
Collapse
|
3
|
How ginseng regulates autophagy: Insights from multistep process. Biomed Pharmacother 2023; 158:114139. [PMID: 36580724 DOI: 10.1016/j.biopha.2022.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Although autophagy is a recognized contributor to the pathogenesis of human diseases, chloroquine and hydroxychloroquine are the only two FDA-approved autophagy inhibitors to date. Emerging evidence has revealed the potential therapeutic benefits of various extracts and active compounds isolated from ginseng, especially ginsenosides and their derivatives, by mediating autophagy. Mechanistically, active components from ginseng mediate key regulators in the multistep processes of autophagy, namely, initiation, autophagosome biogenesis and cargo degradation. AIM OF REVIEW To date, a review that systematically described the relationship between ginseng and autophagy is still lacking. Breakthroughs in finding the key players in ginseng-autophagy regulation will be a promising research area, and will provide positive insights into the development of new drugs based on ginseng and autophagy. KEY SCIENTIFIC CONCEPTS OF REVIEW Here, we comprehensively summarized the critical roles of ginseng-regulated autophagy in treating diseases, including cancers, neurological disorders, cardiovascular diseases, inflammation, and neurotoxicity. The dual effects of the autophagy response in certain diseases are worthy of note; thus, we highlight the complex impacts of both ginseng-induced and ginseng-inhibited autophagy. Moreover, autophagy and apoptosis are controlled by multiple common upstream signals, cross-regulate each other and affect certain diseases, especially cancers. Therefore, this review also discusses the cross-signal transduction pathways underlying the molecular mechanisms and interaction between ginseng-regulated autophagy and apoptosis.
Collapse
|
4
|
Zha W, Sun Y, Gong W, Li L, Kim W, Li H. Ginseng and ginsenosides: Therapeutic potential for sarcopenia. Biomed Pharmacother 2022; 156:113876. [DOI: 10.1016/j.biopha.2022.113876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2022] Open
|
5
|
Song C, Shen T, Kim HG, Hu W, Cho JY. 20(S)-Protopanaxadiol from Panax ginseng Induces Apoptosis and Autophagy in Gastric Cancer Cells by Inhibiting Src. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 51:205-221. [PMID: 36408728 DOI: 10.1142/s0192415x2350012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
20(S)-protopanaxadiol (PPD), a metabolite of Panax ginseng, has multiple pharmacological properties. However, the effects of PPD against human gastric cancer have not been elucidated. Our purpose in this study was to investigate if PPD has anticancer effects against human gastric cancer in vitro. Cell viability, migration, clone formation, and invasion were assessed to explore the effects of PPD on cancer cells. PI and annexin V staining as well as immunoblotting were employed to determine if PPD-induced apoptosis and autophagy of MKN1 and MKN45 cells. The target of PPD was identified using immunoblotting, overexpression analysis, and flow cytometric analysis. PPD exhibited significantly suppressed cell viability, migration, colony formation, and invasion. Phosphorylation of Src and its down-stream effectors were inhibited by PPD. PPD-enhanced apoptosis and autophagy in a dose- and time-dependent manner by inhibiting Src. Collectively, our results demonstrate that PPD induces apoptosis and autophagy in gastric cancer cells in vitro by inhibiting Src.
Collapse
Affiliation(s)
- Chaoran Song
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| | - Ting Shen
- Jiangsu Collaborative Innovation Center of Regional, Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural, Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, P. R. China
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| | - Weicheng Hu
- Jiangsu Collaborative Innovation Center of Regional, Modern Agriculture & Environmental Protection, Jiangsu Key Laboratory for Eco-Agricultural, Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, P. R. China
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
6
|
Wei XB, Jiang WQ, Zeng JH, Huang LQ, Ding HG, Jing YW, Han YL, Li YC, Chen SL. Exosome-Derived lncRNA NEAT1 Exacerbates Sepsis-Associated Encephalopathy by Promoting Ferroptosis Through Regulating miR-9-5p/TFRC and GOT1 Axis. Mol Neurobiol 2022; 59:1954-1969. [PMID: 35038133 PMCID: PMC8882117 DOI: 10.1007/s12035-022-02738-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023]
Abstract
Sepsis can cause sepsis-associated encephalopathy (SAE), but whether SAE was induced or exacerbated by ferroptosis remains unknown. In this study, the rat sepsis model was constructed using the cecal ligation and puncture method. The blood-brain barrier (BBB) permeability was measured by Evans blue dye (EBD) in vivo. The levels of ROS, Fe ion, MDA, GSH, and GPX4 were assessed by enzyme-linked immunosorbent assay (ELISA). The exosomes isolated from serum were cultured with bEnd.3 cells for the in vitro analysis. Moreover, bEnd.3 cells cultured with 100 μM FeCl3 (iron-rich) were to simulate ferroptosis stress. The cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assay. A dual-luciferase reporter gene assay was performed to confirm the relationship between miR-9-5p with NEAT1, TFRC, and GOT1. In vivo, it is found that BBB permeability was damaged in model rats. Level of ROS, Fe ion, and MDA was increased, and level of GSH and GPX4 was decreased, which means ferroptosis was induced by sepsis. Exosome-packaged NEAT1 in serum was significantly upregulated in model rats. In vitro, it is found that NEAT1 functions as a ceRNA for miR-9-5p to facilitate TFRC and GOT1 expression. Overexpression of NEAT1 enhanced ferroptosis stress in bEnd.3 cells. Increased miR-9-5p alleviated sepsis-induced ferroptosis by suppressing the expression of TFRC and GOT1 both in vivo and in vitro. In conclusion, these findings suggest that sepsis induced high expression of serous exosome-derived NEAT1, and it might exacerbate SAE by promoting ferroptosis through regulating miR-9-5p/TFRC and GOT1 axis.
Collapse
Affiliation(s)
- Xue-Biao Wei
- Department of Geriatric Intensive Care Unit, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Wen-Qiang Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Ju-Hao Zeng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Lin-Qiang Huang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Hong-Guang Ding
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Yuan-Wen Jing
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Yong-Li Han
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Yi-Chen Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Sheng-Long Chen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
7
|
Lee YY, Kim SD, Park SC, Rhee MH. Panax ginseng: Inflammation, platelet aggregation, thrombus formation, and atherosclerosis crosstalk. J Ginseng Res 2022; 46:54-61. [PMID: 35058727 PMCID: PMC8753522 DOI: 10.1016/j.jgr.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
Ginseng has been widely studied due to its various therapeutic properties on various diseases such as cardiovascular disease (CVD). Cardiovascular disease has been canonically known to be caused by high levels of low-density lipoproteins (LDL) in the bloodstream, in addition to the impaired vasodilatory effects of cholesterol. However, current research on CVD has revealed a cascade of mechanisms involving a series of events that contribute to the progression of CVD. Although this has been elucidated and summarized in previous studies the detailed correlation between platelet aggregation and innate immunity that plays an important role in CVD progression has not been thoroughly summarized. Furthermore, immune cell subtypes also contribute to the progression of plaque formation in the subendothelial layer. Thrombus formation and the coagulation cascade also have a vital role in the progression of atherosclerosis. Hence, in this mini review we aim to elucidate, summarize, and propose the potent therapeutic effect of ginseng on CVD, mainly on platelet aggregation, plaque formation, and thrombus formation.
Collapse
|
8
|
Kim JK, Shin KK, Kim H, Hong YH, Choi W, Kwak YS, Han CK, Hyun SH, Cho JY. Korean Red Ginseng exerts anti-inflammatory and autophagy-promoting activities in aged mice. J Ginseng Res 2021; 45:717-725. [PMID: 34764726 PMCID: PMC8569327 DOI: 10.1016/j.jgr.2021.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Korean Red Ginseng (KRG) is a traditional herb that has several beneficial properties including anti-aging, anti-inflammatory, and autophagy regulatory effects. However, the mechanisms of these effects are not well understood. In this report, the underlying mechanisms of anti-inflammatory and autophagy-promoting effects were investigated in aged mice treated with KRG-water extract (WE) over a long period. METHODS The mechanisms of anti-inflammatory and autophagy-promoting activities of KRG-WE were evaluated in kidney, lung, liver, stomach, and colon of aged mice using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), quantitative RT-PCR (qRT-PCR), and western blot analysis. RESULTS KRG-WE significantly suppressed the mRNA expression levels of inflammation-related genes such as interleukin (IL)-1β, IL-8, tumor necrosis factor (TNF)-α, monocyte chemoattractant protein-1 (MCP-1), and IL-6 in kidney, lung, liver, stomach, and colon of the aged mice. Furthermore, KRG-WE downregulated the expression of transcription factors and their protein levels associated with inflammation in lung and kidney of aged mice. KRG-WE also increased the expression of autophagy-related genes and their protein levels in colon, liver, and stomach. CONCLUSION The results suggest that KRG can suppress inflammatory responses and recover autophagy activity in aged mice.
Collapse
Affiliation(s)
- Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kon Kuk Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Haeyeop Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Wooram Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yi-Seong Kwak
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Sun Hee Hyun
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
9
|
Cheng TY, Li JX, Chen JY, Chen PY, Ma LR, Zhang GL, Yan PY. Gut microbiota: a potential target for traditional Chinese medicine intervention in coronary heart disease. Chin Med 2021; 16:108. [PMID: 34686199 PMCID: PMC8540100 DOI: 10.1186/s13020-021-00516-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease (CHD) is a common ischaemic heart disease whose pathological mechanism has not been fully elucidated. Single target drugs, such as antiplatelet aggregation, coronary artery dilation and lipid-lowering medicines, can relieve some symptoms clinically but cannot effectively prevent and treat CHD. Accumulating evidence has revealed that alterations in GM composition, diversity, and richness are associated with the risk of CHD. The metabolites of the gut microbiota (GM), including trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs) and bile acids (BAs), affect human physiology by activating numerous signalling pathways. Due to the advantage of multiple components and multiple targets, traditional Chinese medicine (TCM) can intervene in CHD by regulating the composition of the GM, reducing TMAO, increasing SCFAs and other CHD interventions. We have searched PubMed, Web of science, Google Scholar Science Direct, and China National Knowledge Infrastructure (CNKI), with the use of the keywords "gut microbiota, gut flora, traditional Chinese medicine, herbal medicine, coronary heart disease". This review investigated the relationship between GM and CHD, as well as the intervention of TCM in CHD and GM, and aims to provide valuable insights for the treatments of CHD by TCM.
Collapse
Affiliation(s)
- Tian-Yi Cheng
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Jia-Xin Li
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Jing-Yi Chen
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Pei-Ying Chen
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Lin-Rui Ma
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China
| | - Gui-Lin Zhang
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China.
| | - Pei-Yu Yan
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, People's Republic of China.
| |
Collapse
|
10
|
Rahmawati L, Aziz N, Oh J, Hong YH, Woo BY, Hong YD, Manilack P, Souladeth P, Jung JH, Lee WS, Jeon MJ, Kim T, Hossain MA, Yum J, Kim JH, Cho JY. Cissus subtetragona Planch. Ameliorates Inflammatory Responses in LPS-induced Macrophages, HCl/EtOH-induced Gastritis, and LPS-induced Lung Injury via Attenuation of Src and TAK1. Molecules 2021; 26:molecules26196073. [PMID: 34641616 PMCID: PMC8512965 DOI: 10.3390/molecules26196073] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
Several Cissus species have been used and reported to possess medicinal benefits. However, the anti-inflammatory mechanisms of Cissus subtetragona have not been described. In this study, we examined the potential anti-inflammatory effects of C. subtetragona ethanol extract (Cs-EE) in vitro and in vivo, and investigated its molecular mechanism as well as its flavonoid content. Lipopolysaccharide (LPS)-induced macrophage-like RAW264.7 cells and primary macrophages as well as LPS-induced acute lung injury (ALI) and HCl/EtOH-induced acute gastritis mouse models were utilized. Luciferase assays, immunoblotting analyses, overexpression strategies, and cellular thermal shift assay (CETSA) were performed to identify the molecular mechanisms and targets of Cs-EE. Cs-EE concentration-dependently reduced the secretion of NO and PGE2, inhibited the expression of inflammation-related cytokines in LPS-induced RAW264.7 cells, and decreased NF-κB- and AP-1-luciferase activity. Subsequently, we determined that Cs-EE decreased the phosphorylation events of NF-κB and AP-1 pathways. Cs-EE treatment also significantly ameliorated the inflammatory symptoms of HCl/EtOH-induced acute gastritis and LPS-induced ALI mouse models. Overexpression of HA-Src and HA-TAK1 along with CETSA experiments validated that inhibited inflammatory responses are the outcome of attenuation of Src and TAK1 activation. Taken together, these findings suggest that Cs-EE could be utilized as an anti-inflammatory remedy especially targeting against gastritis and acute lung injury by attenuating the activities of Src and TAK1.
Collapse
Affiliation(s)
- Laily Rahmawati
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
| | - Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
| | - Jieun Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
| | - Byoung Young Woo
- AmorePacific R&D Center, Yongin 17074, Korea; (B.Y.W.); (Y.D.H.)
| | - Yong Deog Hong
- AmorePacific R&D Center, Yongin 17074, Korea; (B.Y.W.); (Y.D.H.)
| | - Philaxay Manilack
- Department of Forestry, Ministry of Agriculture and Forestry, Vientiane P.O. Box 811, Laos;
| | - Phetlasy Souladeth
- Department of Forest Management, Faculty of Forest Science, National University of Laos, Vientiane P.O. Box 7322, Laos;
| | - Ji Hwa Jung
- Division of Zoology, Honam National Institute of Biological Resources, Mokpo 58762, Korea;
| | - Woo Shin Lee
- Department of Forest Sciences, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea;
| | - Mi Jeong Jeon
- Animal Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (M.J.J.); (T.K.); (J.Y.)
| | - Taewoo Kim
- Animal Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (M.J.J.); (T.K.); (J.Y.)
| | - Mohammad Amjad Hossain
- Department of Veterinary Physiology, College of Medicine, Chonbuk National University, Iksan 54596, Korea;
| | - Jinwhoa Yum
- Animal Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (M.J.J.); (T.K.); (J.Y.)
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Medicine, Chonbuk National University, Iksan 54596, Korea;
- Correspondence: (J.-H.K.); (J.Y.C.); Tel.: +82-63-270-2563 (J.-H.K.); +82-31-290-7876 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
- Correspondence: (J.-H.K.); (J.Y.C.); Tel.: +82-63-270-2563 (J.-H.K.); +82-31-290-7876 (J.Y.C.)
| |
Collapse
|
11
|
Jeong D, Qomaladewi NP, Lee J, Park SH, Cho JY. The Role of Autophagy in Skin Fibroblasts, Keratinocytes, Melanocytes, and Epidermal Stem Cells. J Invest Dermatol 2021; 140:1691-1697. [PMID: 32800183 DOI: 10.1016/j.jid.2019.11.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 10/30/2019] [Accepted: 11/09/2019] [Indexed: 12/20/2022]
Abstract
Human skin acts as a barrier to protect our bodies from UV rays and external pathogens and to prevent water loss. Phenotypes of aging, or natural aging due to chronic damage, include wrinkles and the reduction of skin thickness that occur because of a loss of skin cell function. The dysregulation of autophagy, a lysosome-related degradation pathway, can lead to cell senescence, cancer, and various human diseases due to abnormal cellular homeostasis. Here, we discuss the roles and molecular mechanisms of autophagy involved in the anti-aging effects of autophagy and the relationship between autophagy and aging in skin cells.
Collapse
Affiliation(s)
- Deok Jeong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea
| | | | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
12
|
Anti-Melanogenic Effects of Ethanol Extracts of the Leaves and Roots of Patrinia villosa (Thunb.) Juss through Their Inhibition of CREB and Induction of ERK and Autophagy. Molecules 2020; 25:molecules25225375. [PMID: 33212959 PMCID: PMC7698407 DOI: 10.3390/molecules25225375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Patrinia villosa (Thunb.) Juss is a traditional herb commonly used in East Asia including Korea, Japan, and China. It has been administered to reduce and treat inflammation in Donguibogam, Korea. The mechanism for its anti-inflammatory effects has already been reported. In this study, we confirmed the efficacy of Patrinia villosa (Thunb.) Juss ethanol extract (Pv-EE) for inducing autophagy and investigate its anti-melanogenic properties. Melanin secretion and content were investigated using cells from the melanoma cell line B16F10. Pv-EE inhibited melanin in melanogenesis induced by α-melanocyte-stimulating hormone (α-MSH). The mechanism of inhibition of Pv-EE was confirmed by suppressing the mRNA of microphthalmia-associated transcription factor (MITF), decreasing the phosphorylation level of CREB, and increasing the phosphorylation of ERK. Finally, it was confirmed that Pv-EE induces autophagy through the autophagy markers LC3B and p62, and that the anti-melanogenic effect of Pv-EE is inhibited by the autophagy inhibitor 3-methyl adenine (3-MA). These results suggest that Pv-EE may be used as a skin protectant due to its anti-melanin properties including autophagy.
Collapse
|
13
|
Functional roles and mechanisms of ginsenosides from Panax ginseng in atherosclerosis. J Ginseng Res 2020; 45:22-31. [PMID: 33437153 PMCID: PMC7790891 DOI: 10.1016/j.jgr.2020.07.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/17/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis (AS) is a leading cause of cardiovascular diseases (CVDs) and it results in a high rate of death worldwide, with an increased prevalence with age despite advances in lifestyle management and drug therapy. Atherosclerosis is a chronic progressive inflammatory process, and it mainly presents with lipid accumulation, foam cell proliferation, inflammatory response, atherosclerotic plaque formation and rupture, thrombosis, and vascular calcification. Therefore, there is a great need for reliable therapeutic drugs or remedies to cure or alleviate atherosclerosis and reduce the societal burden. Ginsenosides are natural steroid glycosides and triterpene saponins obtained mainly from the plant ginseng. Several recent studies have reported that ginsenosides have a variety of pharmacological activities against several diseases including inflammation, cancer and cardiovascular diseases. This review focuses on describing the different pharmacological functions and underlying mechanisms of various active ginsenosides (Rb1,-Rd, -F, -Rg1, -Rg2, and -Rg3, and compound K) for atherosclerosis, which could provide useful insights for developing novel and effective anti-cardiovascular drugs.
Collapse
|
14
|
Korean Red Ginseng Plays An Anti-Aging Role by Modulating Expression of Aging-Related Genes and Immune Cell Subsets. Molecules 2020; 25:molecules25071492. [PMID: 32218338 PMCID: PMC7181072 DOI: 10.3390/molecules25071492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/23/2022] Open
Abstract
Despite previous reports of anti-aging effects of Korean red ginseng (KRG), the underlying mechanisms remain poorly understood. Therefore, this study investigated possible mechanisms of KRG-mediated anti-aging effects in aged mice. KRG significantly inhibited thymic involution in old mice. Interestingly, KRG only increased protein expression, but not mRNA expression, of aging-related genes Lin28a, GDF-11, Sirt1, IL-2, and IL-17 in the thymocytes of old mice. KRG also modulated the population of some types of immune cells in old mice. KRG increased the population of regulatory T cells and interferon-gamma (IFN-γ)-expressing natural killer (NK) cells in the spleen of old mice, but serum levels of regulatory T cell-specific cytokines IL-10 and TGF-β were unaffected. Finally, KRG recovered mRNA expression of Lin28a, GDF-11, and Sirt1 artificially decreased by concanavalin A (Con A) in both thymocytes and splenocytes of old mice without cytotoxicity. These results suggest that KRG exerts anti-aging effects by preventing thymic involution, as well as modulating the expression of aging-related genes and immune cell subsets.
Collapse
|
15
|
Lee JO, Kim JH, Kim S, Kim MY, Hong YH, Kim HG, Cho JY. Gastroprotective effects of the nonsaponin fraction of Korean Red Ginseng through cyclooxygenase-1 upregulation. J Ginseng Res 2019; 44:655-663. [PMID: 32617046 PMCID: PMC7322762 DOI: 10.1016/j.jgr.2019.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 10/07/2019] [Accepted: 11/01/2019] [Indexed: 01/16/2023] Open
Abstract
Background Korean Red Ginseng is known to exhibit immune-enhancing and anti-inflammatory properties. The immune-enhancing effects of the nonsaponin fraction (NSF) of Korean Red Ginseng have been studied in many reports. However, the gastroprotective effect of this fraction is not fully understood. In this study, we demonstrate the activities of NSF for gastrointestinal protection and its related critical factor. Methods The in vitro and in vivo regulatory functions of NSF on cyclooxygenase-1 (COX-1) messenger RNA and protein levels were examined by reverse transcription polymerase chain reaction and immunoblotting analyses. Gastroprotective effects of NSF were investigated by histological score, gastric juice pH, and myeloperoxidase activity on indomethacin-induced, cold stress-induced, and acetylsalicylic acid-induced gastritis and dextran sulfate sodium-induced colitis in in vivo mouse models. Results NSF did not show cytotoxicity, and it increased COX-1 messenger RNA expression and protein levels in RAW264.7 cells. This upregulation was also observed in colitis and gastritis in vivo models. In addition, NSF treatment in mice ameliorated the symptoms of gastrointestinal inflammation, including histological score, colon length, gastric juice pH, gastric wall thickness, and myeloperoxidase activity. Conclusion These results suggest that NSF has gastroprotective effects on gastritis and colitis in in vivo mouse models through COX-1 upregulation.
Collapse
Affiliation(s)
- Jeong-Oog Lee
- Department of Aerospace Information Engineering, Bio-Inspired Aerospace Information Laboratory, Konkuk University, Seoul, Republic of Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sunggyu Kim
- Research and Business Foundation, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Corresponding author: Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, Republic of Korea.
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Corresponding author: Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Research and Business Foundation, Sungkyunkwan University, Suwon, Republic of Korea
- Corresponding author: Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, Republic of Korea.
| |
Collapse
|
16
|
El‐kott AF, Al‐kahtani MA, Shati AA. Calycosin induces apoptosis in adenocarcinoma
HT
29 cells by inducing cytotoxic autophagy mediated by
SIRT
1/
AMPK
‐induced inhibition of Akt/
mTOR. Clin Exp Pharmacol Physiol 2019; 46:944-954. [DOI: 10.1111/1440-1681.13133] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/02/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Attalla Farag El‐kott
- Biology Department College of Science King Khalid University Abha Saudi Arabia
- Zoology Department College of Science Damanhour University Damanhour Egypt
| | | | - Ali A. Shati
- Biology Department College of Science King Khalid University Abha Saudi Arabia
| |
Collapse
|