1
|
Liu Y, Jiang L, Song W, Wang C, Yu S, Qiao J, Wang X, Jin C, Zhao D, Bai X, Zhang P, Wang S, Liu M. Ginsenosides on stem cells fate specification-a novel perspective. Front Cell Dev Biol 2023; 11:1190266. [PMID: 37476154 PMCID: PMC10354371 DOI: 10.3389/fcell.2023.1190266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Recent studies have demonstrated that stem cells have attracted much attention due to their special abilities of proliferation, differentiation and self-renewal, and are of great significance in regenerative medicine and anti-aging research. Hence, finding natural medicines that intervene the fate specification of stem cells has become a priority. Ginsenosides, the key components of natural botanical ginseng, have been extensively studied for versatile effects, such as regulating stem cells function and resisting aging. This review aims to summarize recent progression regarding the impact of ginsenosides on the behavior of adult stem cells, particularly from the perspective of proliferation, differentiation and self-renewal.
Collapse
Affiliation(s)
- Ying Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Leilei Jiang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wenbo Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenxi Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shiting Yu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Juhui Qiao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xinran Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chenrong Jin
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Peiguang Zhang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences Changchun, Changchun, Jilin, China
| | - Siming Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Jia Y, Huang X, Shi H, Wang M, Chen J, Zhang H, Hou D, Jing H, Du J, Han H, Zhang J. ADAMDEC1 induces EMT and promotes colorectal cancer cells metastasis by enhancing Wnt/β-catenin signaling via negative modulation of GSK3β. Exp Cell Res 2023:113629. [PMID: 37187249 DOI: 10.1016/j.yexcr.2023.113629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/18/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023]
Abstract
Colorectal cancer (CRC) is a highly invasive malignant tumor, with a high proliferative capacity and is prone to epithelial-mesenchymal transition (EMT) and subsequent metastasis. A disintegrin and metalloproteinase domain-like decysin 1 (ADAMDEC1) is a proteolytically active metzincin metalloprotease that is invested in extracellular matrix remodeling, cell adhesion, invasion, and migration. However, the effects of ADAMDEC1 on CRC are unclear. The purpose of this research is to investigate the expression and biological role of ADAMDEC1 in CRC. We found that ADAMDEC1 was substantially elevated in both clinical samples and CRC cell lines. Likewise, ADAMDEC1 can enhance CRC cell proliferation, migration, and invasion while inhibiting apoptosis. Interestingly, we discovered that exogenous ADAMDEC1 overexpression triggered epithelial-mesenchymal transition (EMT) in CRC cells, as evidenced by alterations in E-cadherin, N-cadherin, and vimentin expression. In ADAMDEC1-knockdown or ADAMDEC1-overexpressing CRC cells, the Western blotting analysis revealed that downstream targets of Wnt signaling, along with β-catenin, Wnt 4, LEF1, Cyclin D1, and c-Myc, were down-regulated or up-regulated. Furthermore, inhibition of the Wnt/β-catenin pathway by FH535 negated the effect of ADAMDEC1 overexpression on EMT and CRC cell proliferation. Further mechanistic research revealed that ADAMDEC1 knockdown might up-regulate GSK3β and inactivate the Wnt/β-catenin pathway, accompanied by suppressing the expression of β-catenin. Additionally, the blockage of GSK3β by CHIR 99021 markedly abolished the inhibitory effect of ADAMDEC1 knockdown on Wnt/β-catenin signaling. In summary, our findings first indicate that ADAMDEC1 promotes CRC metastasis by negatively regulating GSK3β, activating the Wnt/β-catenin signaling pathway, and inducing EMT, suggesting its potential utility as a therapeutic target for the treatment of metastatic CRC.
Collapse
Affiliation(s)
- Yuna Jia
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Xiaoyong Huang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Haiyan Shi
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - MingMing Wang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Jie Chen
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Huahua Zhang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Danyang Hou
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Hongmei Jing
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China
| | - Juan Du
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China.
| | - Huihui Han
- Department of Obstetrics, Affiliated Hospital of Yan'an University, Yan'an, 716000, Shaanxi Province, China.
| | - Jing Zhang
- Department of Clinical Medicine, Medical College of Yan'an University, Yan'an, 716000, Shaanxi Province, China; Yan'an Key Laboratory of Chronic Disease Prevention and Research, Yan'an, 716000, Shaanxi Province, China.
| |
Collapse
|
3
|
Li C, Zhan Y, Zhang R, Tao Q, Lang Z, Zheng J. 20(S)- Protopanaxadiol suppresses hepatic stellate cell activation via WIF1 demethylation-mediated inactivation of the Wnt/β-catenin pathway. J Ginseng Res 2022. [DOI: 10.1016/j.jgr.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
4
|
Zhang J, Hu Q, Jiang X, Wang S, Zhou X, Lu Y, Huang X, Duan H, Zhang T, Ge H, Yu A. Actin Alpha 2 Downregulation Inhibits Neural Stem Cell Proliferation and Differentiation into Neurons through Canonical Wnt/ β-Catenin Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7486726. [PMID: 35186189 PMCID: PMC8850075 DOI: 10.1155/2022/7486726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
Abstract
Our previous study has shown that actin alpha 2 (ACTA2) is expressed in NSC and ACTA2 downregulation inhibits NSC migration by increasing RhoA expression and decreasing the expression of Rac1 to curb actin filament polymerization. Given that proliferation and differentiation are the two main characteristics of NSC, the role of ACTA2 downregulation in the proliferation and differentiation of NSC remains elusive. Here, the results demonstrated that ACTA2 downregulation using ACTA2 siRNA held the potential of inhibiting NSC proliferation using cell counting kit-8 (CCK8) and immunostaining. Then, our data illustrated that ACTA2 downregulation attenuated NSC differentiation into neurons, while directing NSC into astrocytes and oligodendrocytes using immunostaining and immunoblotting. Thereafter, the results revealed that the canonical Wnt/β-catenin pathway was involved in the effect of ACTA2 downregulation on the proliferation and differentiation of NSC through upregulating p-β-catenin and decreasing β-catenin due to inactivating GSK-3β, while this effect could be partially abolished with administration of CHIR99012, a GSK-3 inhibitor. Collectively, these results indicate that ACTA2 downregulation inhibits NSC proliferation and differentiation into neurons through inactivation of the canonical Wnt/β-catenin pathway. The aim of the present study is to elucidate the role of ACTA2 in proliferation and differentiation of NSC and to provide an intervention target for promoting NSC proliferation and properly directing NSC differentiation.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| | - Quan Hu
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| | - Xuheng Jiang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| | - Shuhong Wang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| | - Xin Zhou
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| | - Yuanlan Lu
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| | - Xiaofei Huang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| | - Haizhen Duan
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| | - Tianxi Zhang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| | - Hongfei Ge
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| | - Anyong Yu
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, 563003 Zunyi, Guizhou, China
| |
Collapse
|
5
|
Total Ginsenoside Extract from Panax ginseng Enhances Neural Stem Cell Proliferation and Neuronal Differentiation by Inactivating GSK-3 β. Chin J Integr Med 2022; 28:229-235. [PMID: 35084698 DOI: 10.1007/s11655-021-3508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To study the effects of total ginsenosides (TG) extract from Panax ginseng on neural stem cell (NSC) proliferation and differentiation and their underlying mechanisms. METHODS The migration of NSCs after treatment with various concentrations of TG extract (50, 100, or 200 µ g/mL) were monitored. The proliferation of NSCs was examined by a combination of cell counting kit-8 and neurosphere assays. NSC differentiation mediated by TG extract was evaluated by Western blotting and immunofluorescence staining to monitor the expression of nestin and microtubule associated protein 2 (MAP2). The GSK-3 β/β-catenin pathway in TG-treated NSCs was examined by Western blot assay. The NSCs with constitutively active GSK-3 β mutant were made by adenovirus-mediated gene transfection, then the proliferation and differentiation of NSCs mediated by TG were further verified. RESULTS TG treatment significantly enhanced NSC migration (P<0.01 or P<0.05) and increased the proliferation of NSCs (P<0.01 or P<0.05). TG mediation also significantly upregulated MAP2 expression but downregulated nestin expression (P<0.01 or P<0.05). TG extract also significantly induced GSK-3 β phosphorylation at Ser9, leading to GSK-3 β inactivation and, consequently, the activation of the GSK-3 β/β-catenin pathway (P<0.01 or P<0.05). In addition, constitutive activation of GSK-3 β in NSCs by the transfection of GSK-3 β S9A mutant was found to significantly suppress TG-mediated NSC proliferation and differentiation (P<0.01 or P<0.05). CONCLUSION TG promoted NSC proliferation and neuronal differentiation by inactivating GSK-3β.
Collapse
|
6
|
Li W, Wang Y, Zhou X, Pan X, Lü J, Sun H, Xie Z, Chen S, Gao X. The anti-tumor efficacy of 20(S)-protopanaxadiol, an active metabolite of ginseng, according to fasting on hepatocellular carcinoma. J Ginseng Res 2022; 46:167-174. [PMID: 35058733 PMCID: PMC8753519 DOI: 10.1016/j.jgr.2021.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
|
7
|
Chen L, Li R, Chen F, Zhang H, Zhu Z, Xu S, Cheng Y, Zhao Y. A possible mechanism to the antidepressant-like effects of 20 (S)-protopanaxadiol based on its target protein 14-3-3 ζ. J Ginseng Res 2021; 46:666-674. [PMID: 36090685 PMCID: PMC9459030 DOI: 10.1016/j.jgr.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Background Ginsenosides and their metabolites have antidepressant-like effects, but the underlying mechanisms remain unclear. We previously identified 14-3-3 ζ as one of the target proteins of 20 (S)-protopanaxadiol (PPD), a fully deglycosylated ginsenoside metabolite. Methods Corticosterone (CORT) was administered repeatedly to induce the depression model, and PPD was given concurrently. The tail suspension test (TST) and the forced swimming test (FST) were used for behavioral evaluation. All mice were sacrificed. Golgi-cox staining, GSK 3β activity assay, and Western blot analysis were performed. In vitro, the kinetic binding analysis with the Biolayer Interferometry (BLI) was used to determine the molecular interactions. Results TST and FST both revealed that PPD reversed CORT-induced behavioral deficits. PPD also ameliorated the CORT-induced expression alterations of hippocampal Ser9 phosphorylated glycogen synthase kinase 3β (p-Ser9 GSK 3β), Ser133 phosphorylated cAMP response element-binding protein (p-Ser133 CREB), and brain-derived neurotrophic factor (BDNF). Moreover, PPD attenuated the CORT-induced increase in GSK 3β activity and decrease in dendritic spine density in the hippocampus. In vitro, 14-3-3 ζ protein specifically bound to p-Ser9 GSK 3β polypeptide. PPD promoted the binding and subsequently decreased GSK 3β activity. Conclusion These findings demonstrated the antidepressant-like effects of PPD on the CORT-induced mouse depression model and indicated a possible target-based mechanism. The combination of PPD with the 14-3-3 ζ protein may promote the binding of 14-3-3 ζ to p-GSK 3β (Ser9) and enhance the inhibition of Ser9 phosphorylation on GSK 3β kinase activity, thereby activating the plasticity-related CREB–BDNF signaling pathway.
Collapse
Affiliation(s)
- Lin Chen
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruimei Li
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feiyan Chen
- Research and Innovation Center, College of Traditional Chinese Medicine Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hantao Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhu Zhu
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuyi Xu
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao Cheng
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Corresponding author. Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
8
|
Interaction of human IAPP and Aβ 1- 42 aggravated the AD-related pathology and impaired the cognition in mice. Exp Neurol 2020; 334:113490. [PMID: 33007295 DOI: 10.1016/j.expneurol.2020.113490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/06/2020] [Accepted: 09/28/2020] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) have a common pathology. Both diseases are characterized by local deposition of amyloid proteins in the brain or islet organ, but their phenotypes and clinical manifestation vary widely. Although the sources of islet amyloid polypeptide (IAPP) and amyloid beta (Aβ) are independent, their fibrillar sequences are highly homologous. The prevalence of AD in T2DM populations is considerably higher than that in the normal population, but a mechanistic linkage remains elusive. Therefore, the present study aimed to explore the effects of Aβ42 deposition in the brain on the persistently expression of human IAPP (hIAPP). Additionally, cognitive ability, synaptic plasticity, the state of neural stem cells and mitochondrial function were evaluated at 2 or 6 months after stereotaxically injected the oligomer Aβ1-42 into the dentate gyrus of hIAPP (-/+) mice or the wild-type littermates. We found that Aβ42 and amylin were co-located in hippocampus and Aβ42 levels increased when Aβ1-42 was injected in hIAPP transgenic mice compared with that of the wild-type littermates. Furthermore, at 6 months after Aβ1-42 injection in hIAPP (-/+) mice, it exhibits exacerbated AD-related pathologies including Aβ42 deposition, cognitive impairment, synapse reduction, neural stem cells exhaustion and mitochondrial dysfunction. Our present study suggested that hIAPP directly implicated the Aβ42 production and deposition as an important linkage between T2DM and AD.
Collapse
|
9
|
Lin K, Sze SCW, Liu B, Zhang Z, Zhang Z, Zhu P, Wang Y, Deng Q, Yung KKL, Zhang S. 20( S)-protopanaxadiol and oleanolic acid ameliorate cognitive deficits in APP/PS1 transgenic mice by enhancing hippocampal neurogenesis. J Ginseng Res 2020; 45:325-333. [PMID: 33841013 PMCID: PMC8020272 DOI: 10.1016/j.jgr.2020.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/15/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders. Enhancing hippocampal neurogenesis by promoting proliferation and differentiation of neural stem cells (NSCs) is a promising therapeutic strategy for AD. 20(S)-protopanaxadiol (PPD) and oleanolic acid (OA) are small, bioactive compounds found in ginseng that can promote NSC proliferation and neural differentiation in vitro. However, it is currently unknown whether PPD or OA can attenuate cognitive deficits by enhancing hippocampal neurogenesis in vivo in a transgenic APP/PS1 AD mouse model. Here, we administered PPD or OA to APP/PS1 mice and monitored the effects on cognition and hippocampal neurogenesis. Methods We used the Morris water maze, Y maze, and open field tests to compare the cognitive capacities of treated and untreated APP/PS1 mice. We investigated hippocampal neurogenesis using Nissl staining and BrdU/NeuN double labeling. NSC proliferation was quantified by Sox2 labeling of the hippocampal dentate gyrus. We used western blotting to determine the effects of PPD and OA on Wnt/GSK3β/β-catenin pathway activation in the hippocampus. Results Both PPD and OA significantly ameliorated the cognitive impairments observed in untreated APP/PS1 mice. Furthermore, PPD and OA significantly promoted hippocampal neurogenesis and NSC proliferation. At the mechanistic level, PPD and OA treatments resulted in Wnt/GSK-3β/β-catenin pathway activation in the hippocampus. Conclusion PPD and OA ameliorate cognitive deficits in APP/PS1 mice by enhancing hippocampal neurogenesis, achieved by stimulating the Wnt/GSK-3β/β-catenin pathway. As such, PPD and OA are promising novel therapeutic agents for the treatment of AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Kaili Lin
- School of Public Health, Guangzhou Medical University, Guangzhou, China.,Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Stephen Cho-Wing Sze
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhang Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| | - Zhu Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| | - Peili Zhu
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| | - Ying Wang
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| | - Qiudi Deng
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ken Kin-Lam Yung
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| | - Shiqing Zhang
- Department of Biology, Faculty of Science, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong Special Administrative Region (HKSAR), China.,HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.,Golden Meditech Center for NeuroRegeneration Sciences, HKBU, Kowloon Tong, HKSAR, China
| |
Collapse
|