1
|
Xue R, Pan Y, Xia L, Li J. Non-viral vectors combined delivery of siRNA and anti-cancer drugs to reverse tumor multidrug resistance. Biomed Pharmacother 2024; 178:117119. [PMID: 39142247 DOI: 10.1016/j.biopha.2024.117119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Multidrug resistance (MDR) of tumors is one of the main reasons for the failure of chemotherapy. Multidrug resistance refers to the cross-resistance of tumor cells to multiple antitumor drugs with different structures and mechanisms of action. Current strategies to reverse multidrug resistance in tumors include MDR inhibitors and RNAi technology. siRNA is a small molecule RNA that is widely used in RNAi technology and has the characteristics of being prepared in large quantities and chemically modified. However, siRNA is susceptible to degradation in vivo. The effect of siRNA therapy alone is not ideal, so siRNA and anticancer drugs are administered in combination to reverse the MDR of tumors. Non-viral vectors are now commonly used to deliver siRNA and anticancer drugs to tumor sites. This article will review the progress of siRNA and chemotherapeutic drug delivery systems and their mechanisms for reversing multidrug resistance.
Collapse
Affiliation(s)
- Renkai Xue
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yanzhu Pan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
2
|
Rai S, Singh LS, Shaanker RU, Jeyaram K, Parija T, Sahoo D. Endophytic fungi of Panax sokpayensis produce bioactive ginsenoside Compound K in flask fermentation. Sci Rep 2024; 14:9318. [PMID: 38654024 DOI: 10.1038/s41598-024-56441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024] Open
Abstract
Endophytes of Panax have the potential to produce their host plant secondary metabolites, ginsenosides. Panax sokpayensis, an endemic traditional medicinal plant of the Sikkim Himalayas was explored for the isolation of endophytic fungi. In the present study, we have isolated 35 endophytic fungal cultures from the rhizome of P. sokpayensis and screened for ginsenosides production by HPLC by comparing the peak retention time with that of standard ginsenosides. The HPLC analysis revealed that out of 35 isolates, the mycelial extracts of four fungal endophytes (PSRF52, PSRF53, PSRF49 and PSRF58) exhibited peaks with a similar retention time of the standard ginsenoside, Compound K (CK). LC-ESI-MS/MS analysis led to the confirmation of ginsenoside CK production by the four fungal endophytes which showed a compound with m/z 639.6278, similar to that of standard ginsenoside CK with yield in potato dextrose broth flask fermentation ranging from 0.0019 to 0.0386 mg/g of mycelial mass in dry weight basis. The four prospective fungal endophyte isolates were identified as Thermothielavioides terrestris PSRF52, Aspergillus sp. PSRF49, Rutstroemiaceae sp. strain PSRF53, and Phaeosphaeriaceae sp. strain PSRF58 based on ITS sequencing. The present finding highlights the need for further study on growth optimization and other culture parameters to exploit the endophytes as an alternative source for ginsenoside CK production.
Collapse
Affiliation(s)
- Subecha Rai
- Institute of Bioresources and Sustainable Development (IBSD), Sikkim Centre, DBT, Tadong, Gangtok, Sikkim, 737102, India
- School of Biotechnology, KIIT-Deemed to be University, Campus XI, Patia, Bhubaneshwar, Odisha, 751024, India
| | - Laishram Shantikumar Singh
- Institute of Bioresources and Sustainable Development (IBSD), Sikkim Centre, DBT, Tadong, Gangtok, Sikkim, 737102, India.
- Department of Microbiology, Assam Down Town University, Guwahati, Assam, 781026, India.
| | - Ramanan Uma Shaanker
- School of Ecology and Conservation, Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bellary Road, Bangalore, Karnataka, 560065, India
| | - Kumaraswamy Jeyaram
- Institute of Bioresources and Sustainable Development (IBSD), Sikkim Centre, DBT, Tadong, Gangtok, Sikkim, 737102, India
| | - Tithi Parija
- School of Biotechnology, KIIT-Deemed to be University, Campus XI, Patia, Bhubaneshwar, Odisha, 751024, India
| | - Dinabandhu Sahoo
- Institute of Bioresources and Sustainable Development (IBSD), Sikkim Centre, DBT, Tadong, Gangtok, Sikkim, 737102, India
- Department of Botany, University of Delhi, Delhi, 110007, India
| |
Collapse
|
3
|
Cheng H, Sun Y, Yu X, Zhou D, Ding J, Wang S, Ma F. FASN promotes gallbladder cancer progression and reduces cancer cell sensitivity to gemcitabine through PI3K/AKT signaling. Drug Discov Ther 2023; 17:328-339. [PMID: 37743521 DOI: 10.5582/ddt.2023.01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Lipid metabolism plays an important role in the growth and development of tumors. However, the role of lipid metabolism in gallbladder cancer (GBC) has not been clearly clarified. Here, we demonstrated that fatty acid synthase (FASN), a key enzyme in de novo fatty acid biosynthesis, had upregulated expression in GBC samples both at protein and mRNA levels. Analysis of clinical data indicated the association between elevated FASN expression and poorer histology grades. Furthermore, FASN activity impairment through FASN knockdown or treatment with orlistat resulted in the inhibition of cell proliferation and migration, as well as increased sensitivity to gemcitabine. Both FASN knockdown and orlistat treatment induced cell apoptosis. Mechanistically, impairment of FASN activity suppressed the activation of the PI3K/AKT signaling pathway, which led to increased cell apoptosis and sensitivity to gemcitabine. These findings were also validated through nude mouse xenograft models, thus highlighting the potential of targeting FASN as a clinical treatment strategy. Collectively, the present study underscores the crucial role of FASN in the progression of gallbladder cancer via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Haihong Cheng
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxin Sun
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaopeng Yu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhou
- Department of Hepatobiliary Surgery, Tenth People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Jun Ding
- Department of Biliary and Pancreatic Surgery, Shanghai Shuguang Hospital Affiliated with the Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shouhua Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Ma
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Kwon KW, Kim JW, Moon S, Yoon JH, Youn SH, Hyun SH, Kim HG, Kweon DH, Cho JY. Korean Red Ginseng Relieves Inflammation and Modulates Immune Response Induced by Pseudo-Type SARS-CoV-2. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1361-1384. [PMID: 37489113 DOI: 10.1142/s0192415x23500623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Few studies have reported the therapeutic effects of Korean red ginseng (KRG) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the positive effects of KRG on other viruses have been reported and the effects of KRG on pulmonary inflammatory diseases have also been studied. Therefore, this study investigated the therapeutic effects of KRG-water extract (KRG-WE) in a pseudo-type SARS-CoV-2 (PSV)-induced lung injury model. Constructing the pseudovirus, human angiotensin-converting enzyme 2 (hACE2) transgenic mice were infected via intranasal injection that had been orally administered with KRG-WE for six weeks. After 7-days post infection (dpi), the antiviral effects of KRG-WE were confirmed, followed by real-time polymerase chain reaction (PCR), western blot analysis, flow cytometric analysis, and an enzyme-linked immunoassay (ELISA). KRG-WE significantly inhibited an increase in immunoglobulin caused by PSV. Furthermore, KRG-WE effectively suppressed alveolar macrophages (AMs) inside the lungs and helped normalize the population of other immune cells. In addition, virus-induced gene expression and inflammatory signals such as nuclear factor-kappa B and other upstream molecules were downregulated. Moreover, KRG-WE also normalized gene expression and protein activity in the spleen. In conclusion, KRG-WE reduced AMs, normalized the immune response, and decreased the expression of inflammatory genes and activation of signaling pathway phosphorylation, thereby exhibiting anti-inflammatory effects and attenuating lung damage.
Collapse
Affiliation(s)
- Ki Woong Kwon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Ji Won Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Seokoh Moon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Jeong Hyeon Yoon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Soo-Hyun Youn
- Laboratory of Natural Products Efficacy Research, Korea Ginseng Corporation, 30 Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon 34128, Republic of Korea
| | - Sun Hee Hyun
- Laboratory of Natural Products Efficacy Research, Korea Ginseng Corporation, 30 Gajeong-ro, Shinseong-dong, Yuseong-gu, Daejeon 34128, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Chu LL, Hanh NTY, Quyen ML, Nguyen QH, Lien TTP, Do KV. Compound K Production: Achievements and Perspectives. Life (Basel) 2023; 13:1565. [PMID: 37511939 PMCID: PMC10381408 DOI: 10.3390/life13071565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Compound K (CK) is one of the major metabolites found in mammalian blood and organs following oral administration of Panax plants. CK, also known as minor ginsenoside, can be absorbed in the systemic circulation. It has garnered significant attention in healthcare and medical products due to its pharmacological activities, such as antioxidation, anticancer, antiproliferation, antidiabetics, neuroprotection, and anti-atherogenic activities. However, CK is not found in natural ginseng plants but in traditional chemical synthesis, which uses toxic solvents and leads to environmental pollution during the harvest process. Moreover, enzymatic reactions are impractical for industrial CK production due to low yield and high costs. Although CK could be generated from major ginsenosides, most ginsenosides, including protopanaxatriol-oleanane and ocotillol-type, are not converted into CK by catalyzing β-glucosidase. Therefore, microbial cell systems have been used as a promising solution, providing a safe and efficient approach to CK production. This review provides a summary of various approaches for the production of CK, including chemical and enzymatic reactions, biotransformation by the human intestinal bacteria and endophytes as well as engineered microbes. Moreover, the approaches for CK production have been discussed to improve the productivity of target compounds.
Collapse
Affiliation(s)
- Luan Luong Chu
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Nguyen Trinh Yen Hanh
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - My Linh Quyen
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
| | - Quang Huy Nguyen
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi 10000, Vietnam
| | - Tran Thi Phuong Lien
- Faculty of Biology and Agricultural Engineering, Hanoi Pagadogical University 2, Vinh Yen City 283460, Vietnam
| | - Khanh Van Do
- Faculty of Biomedical Sciences, Phenikaa University, Hanoi 12116, Vietnam
| |
Collapse
|
6
|
Li XL, Yin Q, Wang W, Ma RH, Ni ZJ, Thakur K, Zhang JG, Wei ZJ. Effect of ginsenoside CK combined with cisplatin on the proliferation and migration of human cervical cancer HeLa cells via Ras/ERK/MAPK pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
7
|
Liu M, Zhang Y, Zhang A, Deng Y, Gao X, Wang J, Wang Y, Wang S, Liu J, Chen S, Yao W, Liu X. Compound K is a potential clinical anticancer agent in prostate cancer by arresting cell cycle. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154584. [PMID: 36610114 DOI: 10.1016/j.phymed.2022.154584] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ginsenosides, phenolic compounds, and polysaccharides are the bioactive constituents of Panax ginseng Meyer. Compound K (CK) is a secondary ginsenoside with better bioavailability. It is also a promising anticancer agent. PURPOSE We aimed to evaluate the effect of CK on prostate cancer (PCa) and its potential mechanisms. STUDY DESIGN The proliferation, migration and cell cycle of PCa cells after CK treatment were assessed in various PCa cell lines. Docetaxel was used as a positive control drug. Unlike other published studies, the potential mechanisms of CK (50 μM) were investigated by an unbiased global transcriptome sequencing in the current study. METHODS Key CK related genes (CRGs) with prognostic significance were identified and verified by bioinformatic methods using data from the TCGA dataset and GSE21034 dataset. The role of CDK1 in the effect of CK treatment on PCa cells was investigated by overexpression of CDK1. RESULTS CK inhibited the proliferation and migration of PCa cells at concentrations (less than 25 μM) without obvious cytotoxicity. Five key CRGs with prognostic significance were identified, including CCNA2, CCNB2, CCNE2, CDK1, and PKMYT1, which are involved in cell cycle pathways. CK inhibited the expression of these 5 genes and the cell cycle of PCa cells. According to the results of bioinformatic analysis, the expression of the five key CRGs was strongly associated with poor prognosis and advanced pathological stage and grade of PCa. In addition, CK could restore androgen sensitivity in castration-resistant PCa cells, probably by inhibiting the expression of CDK1. After CDK1 overexpression, the inhibition of proliferation and migration of PCa cells by CK was decreased. The inhibition on the phosphorylation of AKT by CK was also reduced. CONCLUSION CK can inhibit PCa cells, and the mechanisms may be associated with the inhibition of cell cycle pathways through CDK1. CK is also a potential clinical anticancer agent for treating PCa.
Collapse
Affiliation(s)
- Man Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yucong Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - An Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuxuan Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xintao Gao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shaoyong Chen
- Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Weimin Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Miao X, Hu J, Chai C, Tang H, Zhao Z, Luo W, Zhou W, Xu H. Establishment and characterization of a new intrahepatic cholangiocarcinoma cell line derived from a Chinese patient. Cancer Cell Int 2022; 22:418. [PMID: 36578029 PMCID: PMC9795767 DOI: 10.1186/s12935-022-02840-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Patients with intrahepatic cholangiocarcinoma (ICC) require chemotherapy due to late detection, rapid disease progression, and low surgical resection rate. Tumor cell lines are extremely important in cancer research for drug discovery and development. Here, we established and characterized a new intrahepatic cholangiocarcinoma cell line, ICC-X1. STR testing confirmed the absence of cross-contamination and high similarity to the original tissue. ICC-X1 exhibited typical epithelial morphology and formed tumor spheres in the suspension culture. The population doubling time was approximately 48 h. The cell line had a complex hypotriploid karyotype. The cell line exhibited a strong migration ability in vitro and cell inoculation into BALB/c nude mice led to the formation of xenografts. Additionally, ICC-X1 cells were sensitive to gemcitabine and paclitaxel but resistant to 5-fluorouracil and oxaliplatin. RNA sequencing revealed that the upregulated cancer-related genes were mainly enriched in several signaling pathways, including the TNF signaling pathway, NOD-like receptor signaling pathway, and NF-κB signaling pathway. The downregulated cancer-related genes were mainly enriched in the Rap1 signaling pathway and Hippo signaling pathway among other pathways. In conclusion, we have created a new ICC cell line derived from Chinese patients. This cell line can be used as a preclinical model to study ICC, specifically tumor metastasis and drug resistance mechanisms.
Collapse
Affiliation(s)
- Xin Miao
- grid.410727.70000 0001 0526 1937State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of the Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000 China
| | - Jinjing Hu
- grid.412643.60000 0004 1757 2902The Forth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000 Gansu China
| | - Changpeng Chai
- grid.412643.60000 0004 1757 2902The Forth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000 Gansu China
| | - Huan Tang
- grid.412643.60000 0004 1757 2902The Forth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000 Gansu China
| | - Zhenjie Zhao
- grid.412643.60000 0004 1757 2902The Forth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000 Gansu China
| | - Wei Luo
- grid.412643.60000 0004 1757 2902The Forth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000 Gansu China
| | - Wence Zhou
- grid.411294.b0000 0004 1798 9345Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, 730000 China ,grid.32566.340000 0000 8571 0482The Second Clinical Medical College, Lanzhou University, Lanzhou, 730000 China
| | - Hao Xu
- grid.412643.60000 0004 1757 2902The Forth Department of General Surgery, The First Hospital of Lanzhou University, No. 1, Donggang West Road, Lanzhou, 730000 Gansu China
| |
Collapse
|
9
|
Hou Y, Meng X, Sun K, Zhao M, Liu X, Yang T, Zhang Z, Su R. Anti-cancer effects of ginsenoside CK on acute myeloid leukemia in vitro and in vivo. Heliyon 2022; 8:e12106. [PMID: 36544827 PMCID: PMC9761710 DOI: 10.1016/j.heliyon.2022.e12106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/17/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Objectives Acute myeloid leukemia (AML) is a malignant disease characterized by clonal proliferation of myeloid cells, and its treatment continues to be a challenge due to high morbidity and mortality. Ginsenoside compound K, a major active metabolite of the protopanaxadiol-type ginsenosides, exhibits biological activities in various cancer cells and animal models. Here, we investigated the role of CK in anticancer potential in AML both in vitro and in vivo. Materials and methods To investigate the inhibitory effects of CK in AML cells, in vitro experiments, including cell viability assays, colony forming assays, and cell cycle and apoptosis assays were performed. AML animal experiment was established and quantitative analysis of lung tumor growth nodules and spleen weight and H&E staining were carried out to further determine the effects of CK on AML. In addition, the potential key genes induced and influenced by CK during treatment was identification by RNA-seq and qRT-PCR. Results CK suppressed AML cell activity and induced apoptosis and G1 cell cycle arrest based on the experiment results. Moreover, significantly down-regulated expression genes of BCL2, KIT, DNMT3A, MYC and CSF-1 and up-regulated expression gene of TET2 in CK treatment AML cells were discovered. Conclusion Our results demonstrated that CK could be used as an anti-AML drug with significant therapeutic efficacy and good biosafety.
Collapse
Affiliation(s)
- Yuzhu Hou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Xiangru Meng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Kaiju Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Mingyue Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Xin Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Tongtong Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China
| | - Zhe Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China
- Corresponding author.
| | - Rui Su
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130017, China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
- Corresponding author.
| |
Collapse
|
10
|
Protective Function of Malus baccata (L.) Borkh Methanol Extract against UVB/Hydrogen Peroxide-Induced Skin Aging via Inhibition of MAPK and NF-κB Signaling. PLANTS 2022; 11:plants11182368. [PMID: 36145769 PMCID: PMC9500733 DOI: 10.3390/plants11182368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
Ultraviolet (UV) irradiation induces ROS production, which activates activator protein (AP)-1 and nuclear factor (NF)-κB signaling and downstream molecules, ultimately triggering the generation of matrix metalloproteinases (MMPs) and degradation of collagen. The aim of this study was to investigate the protective effect of methanol extract from Malus baccata (L.) Borkh (Mb-ME) against aging. DPPH and ABTS assays showed that Mb-ME had a significant antioxidant capacity. Flow cytometry results indicated that Mb-ME attenuated UVB and H2O2-stimulated apoptosis and reactive oxygen species (ROS) generation. RT-PCR analysis in HaCaT and HDF cells suggested that Mb-ME treatment blocked the expression of MMPs, COX-2, IL-1β, IL-6, HYALs, and p53 while promoting the levels of TGM1, FLG, HASs, Sirt1, and Col1A1. Mechanically, Mb-ME inhibited the phosphorylation of MAP kinases and NF-κB signaling. Overall, these results strongly suggest that Mb-ME can be developed as an antiaging therapy.
Collapse
|
11
|
Das A, Bhattacharya B, Roy S. Decrypting a path based approach for identifying the interplay between PI3K and GSK3 signaling cascade from the perspective of cancer. Genes Dis 2022; 9:868-888. [PMID: 35685456 PMCID: PMC9170611 DOI: 10.1016/j.gendis.2021.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 11/27/2022] Open
Abstract
Cancer is one of those leading diseases worldwide, which takes millions of lives every year. Researchers are continuously looking for specific approaches to eradicate the deadly disease, ensuring minimal adverse effects along with more therapeutic significance. Targeting of different aberrantly regulated signaling pathways, involved in cancer, is surely one of the revolutionary chemotherapeutic approach. In this instance, GSK3 and PI3K signaling cascades are considered as important role player for both the oncogenic activation and inactivation which further leads to cancer proliferation and metastasis. In this review, we have discussed the potential role of GSK3 and PI3K signaling in cancer, and we further established the crosstalk between PI3K and GSK3 signaling, through showcasing their cross activation, cross inhibition and convergence pathways in association with cancer. We also exhibited the effect of GSK3 on the efficacy of PI3K inhibitors to overcome the drug resistance and preventing the cell proliferation, metastasis in a combinatorial way with GSK3 inhibitors for a better treatment strategy in clinical settings.
Collapse
Affiliation(s)
- Abhijit Das
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata 700053, India
| | - Barshana Bhattacharya
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata 700053, India
| | - Souvik Roy
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata 700053, India
| |
Collapse
|
12
|
Leenutaphong P, Tancharoen S, Nararatwanchai T, Phruksaniyom C, Sarikaphuti A, Palungwachira P, Chaichalotornkul S. Induction of Human Oral Squamous Carcinoma Apoptosis by Derris scandens Benth and Elephantopus scaber Linn Extracts. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221107970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
D scandens ( Derris scandens Benth.) and E scaber ( Elephantopus scaber Linn.) contain flavonoids and phenolic acids, which have antitumor activity in various cancer cell lines. Oral cancer is among the most common cancers in Southeast Asia, and the survival rate remains low. Thus, this study screened 2 ethanolic plant extracts for cytotoxicity on the oral human squamous carcinoma cell line (HSC-2), and compared the mechanisms of action. Extracts of D scandens and E scaber showed cytotoxicity against HSC-2 cells in a dose-dependent manner. Observation of nuclear morphology by Hoechst 33342 staining revealed chromatin condensation. Apoptosis was confirmed by Annexin V-FITC staining and cell sorting (fluorescence-activated cell sorting) analysis. We demonstrated that cancer apoptosis was accompanied by changes in the expression of procaspase 3 and that D scandens-mediated apoptosis in HSC-2 cells was potentiated by protein kinase B (Akt) and B-cell lymphoma-2 (Bcl-2), while E scaber apoptosis was mediated by mitogen-activated protein kinase (MAPK) pathways, involving stress-activated protein kinases/jun amino-terminal kinase (SAPK/JNK) and p38-MAPK. Further investigation into targets for apoptosis induction by these plant extracts may have potential in oral cancer therapy.
Collapse
Affiliation(s)
| | - Salunya Tancharoen
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | | | - Ariya Sarikaphuti
- School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Pakhawadee Palungwachira
- Department of Emergency Medicine, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | | |
Collapse
|
13
|
Mitra A, Rahmawati L, Lee HP, Kim SA, Han CK, Hyun SH, Cho JY. Korean red ginseng water extract inhibits cadmium-induced lung injury via suppressing MAPK/ERK1/2/AP-1 pathway. J Ginseng Res 2022; 46:690-699. [PMID: 36090678 PMCID: PMC9459071 DOI: 10.1016/j.jgr.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 11/06/2022] Open
Abstract
Background Few studies reported the therapeutic effect of Korean Red Ginseng (KRG) in lung inflammatory diseases. However, the anti-inflammatory role and underlying molecular in cadmium-induced lung injury have been poorly understood, directly linked to chronic lung diseases (CLDs): chronic obstructive pulmonary disease (COPD), cancer etc. Therefore, in this study we aim to investigate the therapeutic activities of water extract of KRG (KRG-WE) in mouse cadmium-induced lung injury model. Method The anti-inflammatory roles and underlying mechanisms of KRG-WE were evaluated in vitro under cadmium-stimulated lung epithelial cells (A549) and HEK293T cell line and in vivo in cadmium-induced lung injury mouse model using semi-quantitative polymerase chain reaction (RT-PCR), quantitative real-time PCR (qPCR), luciferase assay, immunoblotting, and FACS. Results KRG-WE strongly ameliorated the symptoms of CdSO4-induced lung injury in mice according to total cell number in bronchoalveolar lavage fluid (BALF) and severity scores as well as cytokine levels. KRG-WE significantly suppressed the upregulation of inflammatory signaling comprising mitogen-activated protein kinases (MAPK) and their upstream enzymes. In in vitro study, KRG-WE suppressed expression of interleukin (IL)-6, matrix metalloproteinase (MMP)-2, and IL-8 while promoting recovery in CdSO4-treated A549 cells. Similarly, KRG-WE reduced phosphorylation of MAPK and c-Jun/c-Fos in cadmium-exposed A549 cells. Conclusion KRG-WE was found to attenuate symptoms of cadmium-induced lung injury and reduce the expression of inflammatory genes by suppression of MAPK/AP-1-mediated pathway.
Collapse
|
14
|
Zhao M, Liu X, Hou Y, Yang T, Xu J, Su R. Combination of Electrochemistry and Mass Spectrometry to Study Nitric Oxide Metabolism and Its Modulation by Compound K in Breast Cancer Cells. Anal Chem 2022; 94:5122-5131. [PMID: 35306816 DOI: 10.1021/acs.analchem.1c05492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The levels of l-arginine and asymmetric dimethylarginine (ADMA) and the amount of the nitric oxide (NO) production have recently been linked to breast cancer and pharmaceutical effect evaluation. Herein, a method combining electrochemistry and high-resolution mass spectrometry (HRMS) was established and used to study NO metabolism and its modulation by ginsenoside compound K (CK) in breast cancer cells. Platinum nanoparticles-decorated fluorine tin oxide was employed as an electrochemical sensor for in situ detection of NO release, while HRMS was used for the analysis of the NO-related metabolites. Through the combination of the electrochemical and HRMS results, decreases in arginine and NO and increases in ADMA and ornithine were observed after modulation by CK, and two highly correlated metabolic pathways including arginine and proline metabolism and vascular smooth muscle contraction were found. This method offers a new strategy for fast evaluation of pharmaceutical efficacy based on NO metabolism.
Collapse
Affiliation(s)
- Mingyue Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Xin Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Yuzhu Hou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Tongtong Yang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130017, China
| | - Jiaquan Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| | - Rui Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
15
|
Shaji SK, Drishya G, Sunilkumar D, Suravajhala P, Kumar GB, Nair BG. Systematic understanding of anti-tumor mechanisms of Tamarixetin through network and experimental analyses. Sci Rep 2022; 12:3966. [PMID: 35273218 PMCID: PMC8913656 DOI: 10.1038/s41598-022-07087-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 11/24/2022] Open
Abstract
Tamarixetin, a flavonoid derived from Quercetin, was shown to possess anti-cancer properties in various types of cancer. However, the mechanism of action of this compound is not well understood. Observations from reverse docking and network pharmacology analysis, were validated by cell based studies to analyse the chemotherapeutic potential and elucidate the molecular mechanism of action of Tamarixetin in breast cancer. In silico analysis using reverse docking and PPI analysis clearly indicated that out of 35 proteins targeted by Tamarixetin, the top 3 hub genes, namely, AKT1, ESR1 and HSP90AA1, were upregulated in breast tumor tissues and more importantly showed strong negative correlation to breast cancer patient survival. Furthermore, the KEGG pathway analysis showed enrichment of target proteins of Tamarixetin in 33 pathways which are mainly involved in neoplastic signalling. In vitro cell-based studies demonstrated that Tamarixetin could inhibit cell proliferation, induce ROS and reduce mitochondrial membrane potential, leading to cell death. Tamarixetin induced cell cycle arrest at G2/M phase and inhibited the migration as well as the invasion of breast cancer cells. Taken together, the combination of in silico and in vitro approaches used in the present study clearly provides evidence for the chemotherapeutic potential of Tamarixetin in breast cancer.
Collapse
Affiliation(s)
- Sanu K Shaji
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala, 690525, India
| | - G Drishya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala, 690525, India
| | - Damu Sunilkumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala, 690525, India
| | - Prashanth Suravajhala
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala, 690525, India
| | - Geetha B Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala, 690525, India.
| | - Bipin G Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Clappana P.O, Kollam, Kerala, 690525, India.
| |
Collapse
|
16
|
Zhang Y, Qiu Z, Zhu M, Teng Y. Ginsenoside Compound K Assisted G-Quadruplex Folding and Regulated G-Quadruplex-Containing Transcription. Molecules 2021; 26:molecules26237339. [PMID: 34885920 PMCID: PMC8659241 DOI: 10.3390/molecules26237339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022] Open
Abstract
Ginsenoside compound K (CK) is one of the major metabolites of the bioactive ingredients in Panax ginseng, which presents excellent bioactivity and regulates the expression of important proteins. In this work, the effects of CK on G-quadruplexes (G4s) were quantitatively analyzed in the presence and absence of their complementary sequences. CK was demonstrated to facilitate the formation of G4s, and increase the quantity of G4s in the competition with duplex. Thermodynamic experiments suggested that the electrostatic interactions were important for G4 stabilization by CK. CK was further found to regulate the transcription of G4-containing templates, reduce full-length transcripts, and decrease the transcription efficiency. Our results provide new evidence for the pharmacological study of ginsenosides at the gene level.
Collapse
Affiliation(s)
| | | | | | - Ye Teng
- Correspondence: ; Tel.: +86-13843132210
| |
Collapse
|
17
|
Kim JH, Park JG, Hong YH, Shin KK, Kim JK, Kim YD, Yoon KD, Kim KH, Yoo BC, Sung GH, Cho JY. Sauropus brevipes ethanol extract negatively regulates inflammatory responses in vivo and in vitro by targeting Src, Syk and IRAK1. PHARMACEUTICAL BIOLOGY 2021; 59:74-86. [PMID: 33439064 PMCID: PMC7808742 DOI: 10.1080/13880209.2020.1866024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
CONTEXT Sauropus brevipes Müll. Arg. (Phyllanthaceae) has been used as an effective ingredient in a decoction for the treatment of diarrhoea. However, there was no report on its modulatory role in inflammation. OBJECTIVE This study investigates anti-inflammatory effect of S. brevipes in various inflammation models. MATERIALS AND METHODS The aerial part of S. brevipes was extracted with 95% ethanol to produce Sb-EE. RAW264.7 cells pre-treated with Sb-EE were stimulated by lipopolysaccharide (LPS), and Griess assay and PCR were performed. High-performance liquid chromatography (HPLC) analysis, luciferase assay, Western blotting and kinase assay were employed. C57BL/6 mice (10 mice/group) were orally administered with Sb-EE (200 mg/kg) once a day for five days, and peritonitis was induced by an intraperitoneal injection of LPS (10 mg/kg). ICR mice (four mice/group) were orally administered with Sb-EE (20 or 200 mg/kg) or ranitidine (positive control) twice a day for two days, and EtOH/HCl was orally injected to induce gastritis. RESULTS Sb-EE suppressed nitric oxide (NO) release (IC50=34 µg/mL) without cytotoxicity and contained flavonoids (quercetin, luteolin and kaempferol). Sb-EE (200 µg/mL) reduced the mRNA expression of inducible NO synthase (iNOS). Sb-EE blocked the activities of Syk and Src, while inhibiting interleukin-1 receptor associated kinases (IRAK1) by 68%. Similarly, orally administered Sb-EE (200 mg/kg) suppressed NO production by 78% and phosphorylation of Src and Syk in peritonitis mice. Sb-EE also decreased inflammatory lesions in gastritis mice. DISCUSSION AND CONCLUSIONS This study demonstrates the inhibitory effect of Sb-EE on the inflammatory response, suggesting that Sb-EE can be developed as a potential anti-inflammatory agent.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Gwang Park
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Kon Kuk Shin
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jin Kyeong Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Young-Dong Kim
- Department of Life Science, Hallym University, Chuncheon, Republic of Korea
| | - Ki Dong Yoon
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Kyung-Hee Kim
- Proteomic Analysis Team, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Byong Chul Yoo
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Republic of Korea
- Byong Chul Yoo Division of Translational Science, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Gi-Ho Sung
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital and College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
- CONTACT Gi-Ho Sung Institute for Bio-Medical Convergence, International St. Mary’s Hospital and College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
- Jae Youl Cho Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
18
|
Jo M, Lee J, Kim HG, Kim JK, Kim H, Shin KK, Bach TT, Eum SM, Lee JS, Choung ES, Yang Y, Kim KH, Sung GH, Yoo BC, Cho JY. Anti-inflammatory effect of Barringtonia angusta methanol extract is mediated by targeting of Src in the NF-κB signalling pathway. PHARMACEUTICAL BIOLOGY 2021; 59:799-810. [PMID: 34190667 PMCID: PMC8253214 DOI: 10.1080/13880209.2021.1938613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 04/27/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Among the plants in the genus Barringtonia (Lecythidaceae) used as traditional medicines to treat arthralgia, chest pain, and haemorrhoids in Indonesia, Barringtonia racemosa L. and Barringtonia acutangula (L.) Gaertn. have demonstrated anti-inflammatory activity in systemic inflammatory models. OBJECTIVE The anti-inflammatory activity of Barringtonia angusta Kurz has not been investigated. We prepared a methanol extract of the leaves and stems of B. angusta (Ba-ME) and systemically evaluated its anti-inflammatory effects in vitro and in vivo. MATERIALS AND METHODS RAW264.7 cells stimulated with LPS or Pam3CSK4 for 24 h were treated with Ba-ME (12.5, 25, 50, 100, and 150 µg/mL), and NO production and mRNA levels of inflammatory genes were evaluated. Luciferase reporter gene assay, western blot analysis, overexpression experiments, and cellular thermal shift assay were conducted to explore the mechanism of Ba-ME. In addition, the anti-gastritis activity of Ba-ME (50 and 100 mg/kg, administered twice per day for two days) was evaluated using an HCl/EtOH-induced gastritis mouse model. RESULTS Ba-ME dose-dependently suppressed NO production [IC50 = 123.33 µg/mL (LPS) and 46.89 µg/mL (Pam3CSK4)] without affecting cell viability. Transcriptional expression of iNOS, IL-1β, COX-2, IL-6, and TNF-α and phosphorylation of Src, IκBα, p50/105, and p65 were inhibited by Ba-ME. The extract specifically targeted the Src protein by binding to its SH2 domain. Moreover, Ba-ME significantly ameliorated inflammatory lesions in the HCl/EtOH-induced gastritis model. DISCUSSION AND CONCLUSIONS The anti-inflammatory activity of Ba-ME is mediated by targeting of the Src/NF-κB signalling pathway, and B. angusta has potential as an anti-inflammatory drug.
Collapse
Affiliation(s)
- Minkyeong Jo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Haeyeop Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kon Kuk Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), Ha Noi, Vietnam
| | - Sang Mi Eum
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| | | | | | - Yoonyong Yang
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Kyung-Hee Kim
- Proteomic Analysis Team, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Gi-Ho Sung
- Department of Microbiology, Biomedical Institute of Mycological Resource, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, Republic of Korea
| | - Byong Chul Yoo
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
19
|
Zhou L, Li ZK, Li CY, Liang YQ, Yang F. Anticancer properties and pharmaceutical applications of ginsenoside compound K: A review. Chem Biol Drug Des 2021; 99:286-300. [PMID: 34793617 PMCID: PMC9541358 DOI: 10.1111/cbdd.13983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/16/2022]
Abstract
Ginsenoside compound K (CK) is the major intestinal bacterial metabolite of ginsenosides that exhibits anticancer potential in various cancer cells both in vitro and in vivo. The anticancer types, mechanisms, and effects of CK in the past decade have been summarized in this review. Briefly, CK exerts anticancer effects via multiple molecular mechanisms, including the inhibition of proliferation, invasion, and migration, the induction of apoptosis and autophagy, and anti‐angiogenesis. Some signaling pathways play a significant role in related processes, such as PI3K/Akt/mTOR, JNK/MAPK pathway, and reactive oxygen species (ROS). Moreover, the effects of CK combined with nanocarriers for anticancer efficiency are discussed in this review. Furthermore, we aimed to review the research progress of CK against cancer in the past decade, which might provide theoretical support and effective reference for further research on the medicinal value of small molecules, such as CK.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Zhong-Kun Li
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Cong-Yuan Li
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Yue-Qin Liang
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Fan Yang
- Joint Surgery, General Hospital of Tibetan Military Command Lhasa, Lhasa, China
| |
Collapse
|
20
|
Kim JK, Shin KK, Kim H, Hong YH, Choi W, Kwak YS, Han CK, Hyun SH, Cho JY. Korean Red Ginseng exerts anti-inflammatory and autophagy-promoting activities in aged mice. J Ginseng Res 2021; 45:717-725. [PMID: 34764726 PMCID: PMC8569327 DOI: 10.1016/j.jgr.2021.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Korean Red Ginseng (KRG) is a traditional herb that has several beneficial properties including anti-aging, anti-inflammatory, and autophagy regulatory effects. However, the mechanisms of these effects are not well understood. In this report, the underlying mechanisms of anti-inflammatory and autophagy-promoting effects were investigated in aged mice treated with KRG-water extract (WE) over a long period. METHODS The mechanisms of anti-inflammatory and autophagy-promoting activities of KRG-WE were evaluated in kidney, lung, liver, stomach, and colon of aged mice using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), quantitative RT-PCR (qRT-PCR), and western blot analysis. RESULTS KRG-WE significantly suppressed the mRNA expression levels of inflammation-related genes such as interleukin (IL)-1β, IL-8, tumor necrosis factor (TNF)-α, monocyte chemoattractant protein-1 (MCP-1), and IL-6 in kidney, lung, liver, stomach, and colon of the aged mice. Furthermore, KRG-WE downregulated the expression of transcription factors and their protein levels associated with inflammation in lung and kidney of aged mice. KRG-WE also increased the expression of autophagy-related genes and their protein levels in colon, liver, and stomach. CONCLUSION The results suggest that KRG can suppress inflammatory responses and recover autophagy activity in aged mice.
Collapse
Affiliation(s)
- Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kon Kuk Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Haeyeop Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Wooram Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yi-Seong Kwak
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Sun Hee Hyun
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
21
|
Kim SA, Lee CY, Mitra A, Kim H, Woo BY, Hong YD, Noh JK, Yi DK, Kim HG, Cho JY. Anti-Inflammatory Effects of Huberia peruviana Cogn. Methanol Extract by Inhibiting Src Activity in the NF-κB Pathway. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112335. [PMID: 34834697 PMCID: PMC8619548 DOI: 10.3390/plants10112335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
There is a growing need to develop anti-inflammatory drugs to regulate inflammatory responses. An extract of Huberia peruviana Cogn. had the best inhibitory effect on nitric oxide (NO) production in screening process undertaken in our laboratory. However, the anti-inflammatory effect of Huberia peruviana Cogn. methanol extract (Hp-ME) has not been studied. In this study, the anti-inflammatory effect of Hp-ME was assessed by using an NO assay, RT-PCR, luciferase reporter gene activity assay, western blotting assay, HCl/EtOH-induced acute gastritis model, and LPS-induced acute lung injury model. The phytochemical components of Hp-ME were determined through LC-MS/MS analysis. When RAW264.7 and HEK293T cells were treated with Hp-ME, NO production was decreased dose-dependently without cytotoxicity and the mRNA levels of iNOS, COX-2, and TNF-α were decreased. In a luciferase assay, the activity of transcription factors, NF-κB in TRIF or MyD88-overexpressing HEK293T cells was extremely reduced by Hp-ME. The western blotting analysis indicated that Hp-ME has anti-inflammatory effects by inhibiting the phosphorylation of Src. Hp-ME showed anti-inflammatory effects on in vivo models of HCl/EtOH-induced gastritis and LPS-induced acute lung injury. LC-MS/MS revealed that Hp-ME contains several anti-inflammatory flavonoids. The final findings of this study imply that Hp-ME could be used as an anti-inflammatory drug in several inflammatory diseases.
Collapse
Affiliation(s)
- Seung A Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.A.K.); (C.Y.L.); (H.K.)
| | - Chae Young Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.A.K.); (C.Y.L.); (H.K.)
| | - Ankita Mitra
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Haeyeop Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.A.K.); (C.Y.L.); (H.K.)
| | - Byoung Young Woo
- AMOREPACIFIC R&D Center, Yongin 17074, Korea; (B.Y.W.); (Y.D.H.)
| | - Yong Deog Hong
- AMOREPACIFIC R&D Center, Yongin 17074, Korea; (B.Y.W.); (Y.D.H.)
| | - Jin Kyoung Noh
- Instituto de BioEconomia, El Batan, Quito 170135, Ecuador;
| | - Dong-Keun Yi
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.A.K.); (C.Y.L.); (H.K.)
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (S.A.K.); (C.Y.L.); (H.K.)
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| |
Collapse
|
22
|
Rahmawati L, Aziz N, Oh J, Hong YH, Woo BY, Hong YD, Manilack P, Souladeth P, Jung JH, Lee WS, Jeon MJ, Kim T, Hossain MA, Yum J, Kim JH, Cho JY. Cissus subtetragona Planch. Ameliorates Inflammatory Responses in LPS-induced Macrophages, HCl/EtOH-induced Gastritis, and LPS-induced Lung Injury via Attenuation of Src and TAK1. Molecules 2021; 26:molecules26196073. [PMID: 34641616 PMCID: PMC8512965 DOI: 10.3390/molecules26196073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
Several Cissus species have been used and reported to possess medicinal benefits. However, the anti-inflammatory mechanisms of Cissus subtetragona have not been described. In this study, we examined the potential anti-inflammatory effects of C. subtetragona ethanol extract (Cs-EE) in vitro and in vivo, and investigated its molecular mechanism as well as its flavonoid content. Lipopolysaccharide (LPS)-induced macrophage-like RAW264.7 cells and primary macrophages as well as LPS-induced acute lung injury (ALI) and HCl/EtOH-induced acute gastritis mouse models were utilized. Luciferase assays, immunoblotting analyses, overexpression strategies, and cellular thermal shift assay (CETSA) were performed to identify the molecular mechanisms and targets of Cs-EE. Cs-EE concentration-dependently reduced the secretion of NO and PGE2, inhibited the expression of inflammation-related cytokines in LPS-induced RAW264.7 cells, and decreased NF-κB- and AP-1-luciferase activity. Subsequently, we determined that Cs-EE decreased the phosphorylation events of NF-κB and AP-1 pathways. Cs-EE treatment also significantly ameliorated the inflammatory symptoms of HCl/EtOH-induced acute gastritis and LPS-induced ALI mouse models. Overexpression of HA-Src and HA-TAK1 along with CETSA experiments validated that inhibited inflammatory responses are the outcome of attenuation of Src and TAK1 activation. Taken together, these findings suggest that Cs-EE could be utilized as an anti-inflammatory remedy especially targeting against gastritis and acute lung injury by attenuating the activities of Src and TAK1.
Collapse
Affiliation(s)
- Laily Rahmawati
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
| | - Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
| | - Jieun Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
| | - Byoung Young Woo
- AmorePacific R&D Center, Yongin 17074, Korea; (B.Y.W.); (Y.D.H.)
| | - Yong Deog Hong
- AmorePacific R&D Center, Yongin 17074, Korea; (B.Y.W.); (Y.D.H.)
| | - Philaxay Manilack
- Department of Forestry, Ministry of Agriculture and Forestry, Vientiane P.O. Box 811, Laos;
| | - Phetlasy Souladeth
- Department of Forest Management, Faculty of Forest Science, National University of Laos, Vientiane P.O. Box 7322, Laos;
| | - Ji Hwa Jung
- Division of Zoology, Honam National Institute of Biological Resources, Mokpo 58762, Korea;
| | - Woo Shin Lee
- Department of Forest Sciences, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea;
| | - Mi Jeong Jeon
- Animal Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (M.J.J.); (T.K.); (J.Y.)
| | - Taewoo Kim
- Animal Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (M.J.J.); (T.K.); (J.Y.)
| | - Mohammad Amjad Hossain
- Department of Veterinary Physiology, College of Medicine, Chonbuk National University, Iksan 54596, Korea;
| | - Jinwhoa Yum
- Animal Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (M.J.J.); (T.K.); (J.Y.)
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Medicine, Chonbuk National University, Iksan 54596, Korea;
- Correspondence: (J.-H.K.); (J.Y.C.); Tel.: +82-63-270-2563 (J.-H.K.); +82-31-290-7876 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
- Correspondence: (J.-H.K.); (J.Y.C.); Tel.: +82-63-270-2563 (J.-H.K.); +82-31-290-7876 (J.Y.C.)
| |
Collapse
|
23
|
Chen H, Hossain MA, Kim JH, Cho JY. Kahweol Exerts Skin Moisturizing Activities by Upregulating STAT1 Activity. Int J Mol Sci 2021; 22:8864. [PMID: 34445570 PMCID: PMC8396203 DOI: 10.3390/ijms22168864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Kahweol is a diterpene present in coffee. Until now, several studies have shown that kahweol has anti-inflammatory and anti-angiogenic functions. Due to the limited research available about skin protection, this study aims to discern the potential abilities of kahweol and the possible regulation targets. First, the cytotoxicity of kahweol was checked by 3-4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay, while 2,20-azino-bis (3ethylbenzothiazoline-6-sulphonic acid) diammonium salt and 1-diphenyl-2-picryl-hydrazyl were used to examine the radical scavenging ability. Polymerase chain reaction analysis was performed to explore the proper time points and doses affecting skin hydration and barrier-related genes. Luciferase assay and Western blotting were used to explore the possible transcription factors. Finally, fludarabine (a STAT1 inhibitor) was chosen to discern the relationship between skin-moisturizing factors and STAT1. We found that HaCaT cells experienced no toxicity from kahweol, and kahweol displayed moderate radical scavenging ability. Moreover, kahweol increased the outcome of HAS1, HAS2, occludin, and TGM-1 from six hours in a dose-dependent manner as well as the activation of STAT1 from six hours. Additionally, kahweol recovered the suppression of HAS2, STAT1-mediated luciferase activity, and HA secretion, which was all downregulated by fludarabine. In this study, we demonstrated that kahweol promotes skin-moisturizing activities by upregulating STAT1.
Collapse
Affiliation(s)
- Hongxi Chen
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Mohammad Amjad Hossain
- Department of Veterinary Physiology, College of Medicine, Chonbuk National University, Iksan 54596, Korea;
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Medicine, Chonbuk National University, Iksan 54596, Korea;
| | - Jae Youl Cho
- Department of Veterinary Physiology, College of Medicine, Chonbuk National University, Iksan 54596, Korea;
| |
Collapse
|
24
|
Rascio F, Spadaccino F, Rocchetti MT, Castellano G, Stallone G, Netti GS, Ranieri E. The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. Cancers (Basel) 2021; 13:3949. [PMID: 34439105 PMCID: PMC8394096 DOI: 10.3390/cancers13163949] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
The PI3K/AKT pathway is one of the most frequently over-activated intracellular pathways in several human cancers. This pathway, acting on different downstream target proteins, contributes to the carcinogenesis, proliferation, invasion, and metastasis of tumour cells. A multi-level impairment, involving mutation and genetic alteration, aberrant regulation of miRNAs sequences, and abnormal phosphorylation of cascade factors, has been found in multiple cancer types. The deregulation of this pathway counteracts common therapeutic strategies and contributes to multidrug resistance. In this review, we underline the involvement of this pathway in patho-physiological cell survival mechanisms, emphasizing its key role in the development of drug resistance. We also provide an overview of the potential inhibition strategies currently available.
Collapse
Affiliation(s)
- Federica Rascio
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Federica Spadaccino
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| | - Maria Teresa Rocchetti
- Cell Biology Unit, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Giuseppe Castellano
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Giovanni Stallone
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Giuseppe Stefano Netti
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| | - Elena Ranieri
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| |
Collapse
|
25
|
Park SH, Kim DS, Oh J, Geum JH, Kim JE, Choi SY, Kim JH, Cho JY. Matricaria chamomilla (Chamomile) Ameliorates Muscle Atrophy in Mice by Targeting Protein Catalytic Pathways, Myogenesis, and Mitochondrial Dysfunction. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1493-1514. [PMID: 34247561 DOI: 10.1142/s0192415x21500701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Muscle atrophy, or loss of skeletal muscle, is caused by aging, malnutrition, immobility through injury, or diseases such as cancer. Chamomile (Matricaria chamomilla L.) contains various active components, including flavonoids, sesquiterpenes, polyacetylenes, and coumarins, and is used in various herbal medicines in the European Pharmacopoeia. In this study, we investigated the effects of ethanol extract of chamomile [Formula: see text](MC) on muscle wasting and its mechanism of action. Mice with dexamethasone (DEX)-induced muscle atrophy were orally administered MC (100, 200, and 300 mg/kg) for 4 weeks. Micro-computed tomography analysis showed that MC (200 and 300 mg/kg) significantly recovered DEX-induced loss of muscle volume, density, and weight and MC-treated DEX-induced mice also showed increased moving distance and grip strength. MC suppressed the mRNA level of muscle RING finger 1 (MuRF1) while increasing the expression of mitochondrial transcription factor A (TFAM), MyoD, and Myogenin-1. We found 25 peaks in MC samples through HPLC analysis and identified 6 peaks by comparison with a profile of standard compounds: chlorogenic acid (CGA), luteolin-7-O-glucoside (L7G), patulitrin, apigenin-7-O-glucoside (A7G), herniarin, and (E)-tonghaosu. Of these components, the gene expression of MyoD was significantly augmented by patulitrin, herniarin, CGA, and L7G in C2C12 cells, while Myogenin-1 gene expression was increased by A7G, patulitrin, herniarin, CGA, and L7G. Moreover, TFAM gene expression and phosphorylation of AKT were increased by all six ingredients. Based on our results, we suggest MC for use as a supplement or remedy for muscle wasting, including cachexia and sarcopenia.
Collapse
Affiliation(s)
- Sang Hee Park
- Department of Biocosmetics, Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dong Seon Kim
- Department of Integrative Biotechnology and Biomedical, Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jieun Oh
- Department of Integrative Biotechnology and Biomedical, Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Jung-Eun Kim
- Coxmax NBT, Inc., Seongnam 13486, Republic of Korea
| | | | - Ji Hye Kim
- Department of Integrative Biotechnology and Biomedical, Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Biocosmetics, Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.,Department of Integrative Biotechnology and Biomedical, Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
26
|
Han HG, Lee HJ, Sim DY, Im E, Park JE, Park WY, Kim SY, Khil JH, Shim BS, Kim SH. Suppression of phosphoinositide 3-kinase/phosphoinositide-dependent kinase-1/serum and glucocorticoid-induced protein kinase pathway. Phytother Res 2021; 35:4547-4554. [PMID: 34132431 DOI: 10.1002/ptr.7157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/05/2021] [Accepted: 04/30/2021] [Indexed: 12/25/2022]
Abstract
In the current study, the pivotal roles of serum and glucocorticoid-induced protein kinase (SGK1) and NF-kB related signalings known as prognostic biomarkers in cervical cancers were explored in the antitumor effect of a ginseng saponin metabolite compound K (CK) in HeLa and SiHa cervical cancer cells. CK exerted significant cytotoxicity, induced sub-G1 accumulation, and attenuated the expression of proPoly (ADP-ribose) polymerase (pro-PARP) and Pro-cysteine aspartyl-specific protease (pro-caspase3) in HeLa cells more than in SiHa cells. CK inhibited phosphorylation of SGK1 and its upstream genes, phosphoinositide 3-kinases (PI3K), and phosphoinositide-dependent kinase-1 (PDK1) in HeLa cells. In addition, CK suppressed the phosphorylation of SGK1, NF-κB, and inhibitor of kappa B (IκB) and also NF-κB target genes such as X-linked inhibitor of apoptosis protein and B-cell lymphoma 2 (Bcl-2) in HeLa cells. Notably, Immunoprecipitation revealed that SGK1 binds to PI3K or PDK1 and also CK disturbed the binding between SGK1 and PI3K or PDK1 in HeLa cells. Furthermore, PI3K inhibitor LY294002 decreased expression of PI3K, p-PDK1, p-SGK1, and pro-caspase3 and SGK1 inhibitor GSK650394 also reduced expression of NF-κB and pro-caspase3 just like CK in HeLa cells. Overall, these findings suggest that CK induces apoptosis via suppression of PI3K/PDK1/SGK1 and NF-κB signaling axis.
Collapse
Affiliation(s)
- Hyuk Gyu Han
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eunji Im
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Woon Yi Park
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Seok Young Kim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Jae-Ho Khil
- Institute of Sports Science, Kyung Hee University, Yongin, South Korea
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea.,Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
27
|
Kim JK, Choi E, Hong YH, Kim H, Jang YJ, Lee JS, Choung ES, Woo BY, Hong YD, Lee S, Lee BH, Bach TT, Kim JH, Kim JH, Cho JY. Syk/NF-κB-targeted anti-inflammatory activity of Melicope accedens (Blume) T.G. Hartley methanol extract. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113887. [PMID: 33539951 DOI: 10.1016/j.jep.2021.113887] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Melicope accedens (Blume) Thomas G. Hartley is a plant included in the family Rutaceae and genus Melicope. It is a native plant from Vietnam that has been used for ethnopharmacology. In Indonesia and Malaysia, the leaves of M. accedens are applied externally to decrease fever. AIM OF THE STUDY The molecular mechanisms of the anti-inflammatory properties of M. accedens are not yet understood. Therefore, we examined those mechanisms using a methanol extract of M. accedens (Ma-ME) and determined the target molecule in macrophages. MATERIALS AND METHODS We evaluated the anti-inflammatory effects of Ma-ME in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in an HCl/EtOH-triggered gastritis model in mice. To investigate the anti-inflammatory activity, we performed a nitric oxide (NO) production assay and ELISA assay for prostaglandin E2 (PGE2). RT-PCR, luciferase gene reporter assays, western blotting analyses, and a cellular thermal shift assay (CETSA) were conducted to identify the mechanism and target molecule of Ma-ME. The phytochemical composition of Ma-ME was analyzed by HPLC and LC-MS/MS. RESULTS Ma-ME suppressed the production of NO and PGE2 and the mRNA expression of proinflammatory genes (iNOS, IL-1β, and COX-2) in LPS-stimulated RAW264.7 cells without cytotoxicity. Ma-ME inhibited NF-κB activation by suppressing signaling molecules such as IκBα, Akt, Src, and Syk. Moreover, the CETSA assay revealed that Ma-ME binds to Syk, the most upstream molecule in the NF-κB signal pathway. Oral administration of Ma-ME not only alleviated inflammatory lesions, but also reduced the gene expression of IL-1β and p-Syk in mice with HCl/EtOH-induced gastritis. HPLC and LC-MS/MS analyses confirmed that Ma-ME contains various anti-inflammatory flavonoids, including quercetin, daidzein, and nevadensin. CONCLUSIONS Ma-ME exhibited anti-inflammatory activities in vitro and in vivo by targeting Syk in the NF-κB signaling pathway. Therefore, we propose that Ma-ME could be used to treat inflammatory diseases such as gastritis.
Collapse
Affiliation(s)
- Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Eunju Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Haeyeop Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Young-Jin Jang
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Jong Sub Lee
- DanjoungBio Co., Ltd., Wonju, 26303, Republic of Korea.
| | - Eui Su Choung
- DanjoungBio Co., Ltd., Wonju, 26303, Republic of Korea.
| | | | - Yong Deog Hong
- AMOREPACIFIC R&D Center, Yongin, 17074, Republic of Korea.
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, Republic of Korea.
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, 22689, Republic of Korea.
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam.
| | - Ji Hye Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
28
|
Kim H, Yang WS, Htwe KM, Lee MN, Kim YD, Yoon KD, Lee BH, Lee S, Cho JY. Dipterocarpus tuberculatus Roxb. Ethanol Extract Has Anti-Inflammatory and Hepatoprotective Effects In Vitro and In Vivo by Targeting the IRAK1/AP-1 Pathway. Molecules 2021; 26:molecules26092529. [PMID: 33926126 PMCID: PMC8123704 DOI: 10.3390/molecules26092529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/28/2022] Open
Abstract
Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.
Collapse
Affiliation(s)
- Haeyeop Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (W.S.Y.)
| | - Woo Seok Yang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (W.S.Y.)
| | - Khin Myo Htwe
- Popa Mountain Park, Forest Department, Kyaukpadaung Township, Mandalay Division, Kyaukpadaung 05241, Myanmar;
| | - Mi-Nam Lee
- Department of Hospitality and Culinary, Ansan University, Ansan 15318, Korea;
| | - Young-Dong Kim
- Department of Life Science, Hallym University, Chuncheon 200-702, Korea;
| | - Ki Dong Yoon
- College of Pharmacy, The Catholic University of Korea, Bucheon 420-743, Korea;
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Korea;
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 22689, Korea;
- Correspondence: (S.L.); (J.Y.C.); Tel.: +82-32-590-7265 (S.L.); +82-31-290-7868 (J.Y.C.); Fax: +82-32-590-7472 (S.L.); +82-31-290-7870 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (W.S.Y.)
- Correspondence: (S.L.); (J.Y.C.); Tel.: +82-32-590-7265 (S.L.); +82-31-290-7868 (J.Y.C.); Fax: +82-32-590-7472 (S.L.); +82-31-290-7870 (J.Y.C.)
| |
Collapse
|
29
|
Hong YH, Song C, Shin KK, Choi E, Hwang SH, Jang YJ, Taamalli A, Yum J, Kim JH, Kim E, Cho JY. Tunisian Olea europaea L. leaf extract suppresses Freund's complete adjuvant-induced rheumatoid arthritis and lipopolysaccharide-induced inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113602. [PMID: 33246116 DOI: 10.1016/j.jep.2020.113602] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Olea europaea L. (olive) is traditionally used as a folk remedy and functional food in Europe and Mediterranean countries to treat inflammatory diseases. O. europaea contains phenolic compounds and have been reported to prevent cartilage degradation. However, the function and mechanism of O. europaea in rheumatoid arthritis are not known. AIM OF THE STUDY In this study, we aimed to examine anti-inflammatory and anti-arthritic effects of Tunisian O. europaea L. leaf ethanol extract (Oe-EE). MATERIALS AND METHODS To do this, we employed an in vitro macrophage-like cell line and an in vivo Freund's complete adjuvant (AIA)-induced arthritis model. Levels of inflammatory genes and mediators were determined from in vivo samples. RESULTS The Oe-EE clearly reduced the production of the lipopolysaccharide-mediated inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2), in RAW264.7 cells. The results of HPLC showed that Oe-EE contained many active compounds such as oleuropein and flavonoids. In AIA-treated rats, swelling of paws, pain, and cartilage degeneration were alleviated by oral Oe-EE administration. Correlating with in vitro data, PGE2 production was significantly reduced in paw samples. Furthermore, the molecular mechanism of Oe-EE was dissected, and Oe-EE regulated the gene expression of interleukin (IL)-6, inducible NO synthase (iNOS), and MMPs and inflammatory signaling activation. CONCLUSION Consequently, Oe-EE possesses anti-inflammatory and anti-rheumatic effects and is a potential effective treatment for rheumatoid arthritis.
Collapse
Affiliation(s)
- Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Chaoran Song
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Kon Kuk Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Eunju Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - So-Hyeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Young-Jin Jang
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Amani Taamalli
- Laboratory of Olive Biotechnology, Center of Biotechnology-Technopole of Borj-Cedria, BP 901, Hammam-Lif, 2050, Tunisia; Department of Chemistry, College of Sciences, University of Hafr Al Batin, P.O. Box 1803, Hafr Al Batin, 39524, Saudi Arabia.
| | - Jinwhoa Yum
- National Institute of Biological Resources, Ministry of Environment, Incheon, 22689, Republic of Korea.
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
30
|
Song C, Kim MY, Cho JY. Olea europaea Suppresses Inflammation by Targeting TAK1-Mediated MAP Kinase Activation. Molecules 2021; 26:molecules26061540. [PMID: 33799767 PMCID: PMC8000943 DOI: 10.3390/molecules26061540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Possessing a variety of medicinal functions, Olea europaea L. is widely cultivated across the world. However, the anti-inflammatory mechanism of Olea europaea is not yet fully elucidated. In this study, how the methanol extract of the leaves of Olea europaea (Oe-ME) can suppress in vitro inflammatory responses was examined in terms of the identification of the target protein. RAW264.7 and HEK293T cells were used to study macrophage-mediated inflammatory responses and to validate the target protein using PCR, immunoblotting, nuclear fraction, overexpression, and cellular thermal shift assay (CETSA) under fixed conditions. Oe-ME treatment inhibited the mRNA expression levels of cyclooxygenase (COX)-2, matrix metallopeptidase (MMP)-9, and intercellular adhesion molecule-1 (ICAM-1) in activated RAW264.7 cells. Oe-ME diminished the activation of activator protein (AP)-1 and the phosphorylation of its upstream signaling cascades, including extracellular signal regulated kinase (ERK), mitogen-activated protein kinase kinase 1/2 (MEK1/2), c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 3/6 (MKK3/6), p38, MKK7, and transforming growth factor-β-activated kinase 1 (TAK1), in stimulated-RAW264.7 cells. Overexpression and CETSA were carried out to verify that TAK1 is the target of Oe-ME. Our results suggest that the anti-inflammatory effect of Oe-ME could be attributed to its control of posttranslational modification and transcription of TAK1.
Collapse
Affiliation(s)
- Chaoran Song
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
31
|
Park DH, Park JY, Kang KS, Hwang GS. Neuroprotective Effect of Gallocatechin Gallate on Glutamate-Induced Oxidative Stress in Hippocampal HT22 Cells. Molecules 2021; 26:molecules26051387. [PMID: 33806640 PMCID: PMC7961752 DOI: 10.3390/molecules26051387] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress leads to protein degeneration or mitochondrial dysfunction, causing neuronal cell death. Glutamate is a neurotransmitter that nerve cells use to send signals. However, the excess accumulation of glutamate can cause excitotoxicity in the central nervous system. In this study, we deciphered the molecular mechanism of catechin-mediated neuroprotective effect on glutamate-induced oxidative stress in mouse hippocampal neuronal HT22 cells. Cellular antioxidant activity was determined using the 1,1-diphenyl-picryl hydrazyl (DPPH) assay and 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) staining. Furthermore, the levels of intracellular calcium (Ca2+) as well as nuclear condensation and protein expression related to neuronal damage were assessed. All five catechins (epigallocatechin gallate, gallocatechin gallate (GCG), gallocatechin, epicatechin gallate, and epicatechin) showed strong antioxidant effects. Among them, GCG exhibited the highest neuroprotective effect against glutamate excitotoxicity and was used for further mechanistic studies. The glutamate-induced increase in intracellular Ca2+ was reduced after GCG treatment. Moreover, GCG reduced nuclear condensation and the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinases (JNK) involved in cell death. The neuroprotective effect of GCG against glutamate-induced oxidative stress in HT22 cells was attributed to the reduction in intracellular free radicals and Ca2+ influx and also the inhibition of phosphorylation of ERK and JNK. Furthermore, the antioxidant effect of GCG was found to be likely due to the inhibition of phosphorylation of ERK and JNK that led to the effective suppression of neurocytotoxicity caused by glutamate in HT22 cells.
Collapse
Affiliation(s)
- Do Hwi Park
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
| | - Jun Yeon Park
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Korea;
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
- Correspondence: (K.S.K.); (G.S.H.); Tel.: +82-31-750-5402 (K.S.K.); +82-31-750-5421 (G.S.H.); Fax: +82-31-750-6028 (K.S.K.); +82-31-750-7029 (G.S.H.)
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea;
- Correspondence: (K.S.K.); (G.S.H.); Tel.: +82-31-750-5402 (K.S.K.); +82-31-750-5421 (G.S.H.); Fax: +82-31-750-6028 (K.S.K.); +82-31-750-7029 (G.S.H.)
| |
Collapse
|
32
|
DNA or Protein Methylation-Dependent Regulation of Activator Protein-1 Function. Cells 2021; 10:cells10020461. [PMID: 33670008 PMCID: PMC7926996 DOI: 10.3390/cells10020461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic regulation and modification govern the transcriptional mechanisms that promote disease initiation and progression, but can also control the oncogenic processes, cell signaling networks, immunogenicity, and immune cells involved in anti-inflammatory and anti-tumor responses. The study of epigenetic mechanisms could have important implications for the development of potential anti-inflammatory treatments and anti-cancer immunotherapies. In this review, we have described the key role of epigenetic progression: DNA methylation, histone methylation or modification, and protein methylation, with an emphasis on the activator protein-1 (AP-1) signaling pathway. Transcription factor AP-1 regulates multiple genes and is involved in diverse cellular processes, including survival, differentiation, apoptosis, and development. Here, the AP-1 regulatory mechanism by DNA, histone, or protein methylation was also reviewed. Various methyltransferases activate or suppress AP-1 activities in diverse ways. We summarize the current studies on epigenetic alterations, which regulate AP-1 signaling during inflammation, cancer, and autoimmune diseases, and discuss the epigenetic mechanisms involved in the regulation of AP-1 signaling.
Collapse
|
33
|
Hong H, Baatar D, Hwang SG. Anticancer Activities of Ginsenosides, the Main Active Components of Ginseng. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8858006. [PMID: 33623532 PMCID: PMC7875636 DOI: 10.1155/2021/8858006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
Cancer incidence rate has been increasing drastically in recent years. One of the many cancer treatment methods is chemotherapy. Traditional medicine, in the form of complementary and alternative therapy, is actively used to treat cancer, and many herbs and active ingredients of such therapies are being intensely studied to integrate them into modern medicine. Ginseng is traditionally used as a nourishing tonic and for treating various diseases in Asian countries. The therapeutic potential of ginseng in modern medicine has been studied extensively; the main bioactive component of ginseng is ginsenosides, which have gathered attention, particularly for their prospects in the treatment of fatal diseases such as cancer. Ginsenosides displayed their anticancer and antimetastatic properties not only via restricting cancer cell proliferation, viability, invasion, and migration but also by promoting apoptosis, cell cycle arrest, and autophagy in several cancers, such as breast, brain, liver, gastric, and lung cancer. Additionally, ginsenosides can work synergistically with already existing cancer therapies. Thus, ginsenosides may be used alone or in combination with other pharmaceutical agents in new therapeutic strategies for cancer. To date however, there is little systematic summary available for the anticancer effects and therapeutic potential of ginsenosides. Therefore, we have reviewed and discussed all available literature in order to facilitate further research of ginsenosides in this manuscript.
Collapse
Affiliation(s)
- Heeok Hong
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Delgerzul Baatar
- Laboratory of Genetics, Institute of Biology, Mongolian Academy of Sciences, Peace Avenue 13330, Ulaanbaatar, Mongolia
| | - Seong Gu Hwang
- Department of Animal Life and Environmental Science, Hankyong National University, Anseong City 17579, Republic of Korea
| |
Collapse
|
34
|
Chen H, Jang J, Kopalli SR, Yum J, Yoon K, Cho JY. Anti-photoaging activities of Sorbaria kirilowii ethanol extract in UVB-damaged cells. Cytotechnology 2021; 73:127-138. [PMID: 33505120 DOI: 10.1007/s10616-020-00449-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/06/2020] [Indexed: 12/18/2022] Open
Abstract
Sorbaria kirilowii (Regel) Maxim, a plant found in China, Korea, Japan, and east of Europe, is a common herb used for traditional medicinal purposes. However, its ability to prevent photoaging has not been studied. In this study, we investigated the anti-photoaging functions of an ethanol extract (Sk-EE) of S. kirilowii (Regel) Maxim using human keratinocytes exposed to UVB. First, we analyzed the cytotoxicity of Sk-EE. Then, we determine the expression of genes related to inflammation, collagen degradation, and moisture retention. We also explored the anti-photoaging mechanism of Sk-EE by determining correlated signaling pathways and target molecules using reporter gene assays and immunoblotting analyses. Sk-EE treatment of cells increased hyaluronic acid synthase (HAS), filaggrin (FLG), and collagen type I alpha 1 (COL1A1) expression. Sk-EE dose-dependently inhibited the UVB-induced expression of matrix metalloproteinases (MMPs) 1, 2, 9 and cyclooxygenase (COX)-2 by blocking the activator protein (AP)-1 signaling pathway, in particular the phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular response kinase (ERK). In addition, c-Fos and c-Jun were targeted by Sk-EE. Our results indicate that Sk-EE has anti-inflammatory and skin-protective properties, and could be a candidate to treat signs of photoaging.
Collapse
Affiliation(s)
- Hongxi Chen
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Republic of Korea
| | - Jiwon Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Integrative Bioscience, and Biotechnology, Sejong University, Seoul, 05006 Republic of Korea
| | - Jinwhoa Yum
- Ministry of Environment, National Institute of Biological Resources, Incheon, 22689 Republic of Korea
| | - Keejung Yoon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Republic of Korea
| |
Collapse
|
35
|
Anti-Melanogenic Effects of Ethanol Extracts of the Leaves and Roots of Patrinia villosa (Thunb.) Juss through Their Inhibition of CREB and Induction of ERK and Autophagy. Molecules 2020; 25:molecules25225375. [PMID: 33212959 PMCID: PMC7698407 DOI: 10.3390/molecules25225375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Patrinia villosa (Thunb.) Juss is a traditional herb commonly used in East Asia including Korea, Japan, and China. It has been administered to reduce and treat inflammation in Donguibogam, Korea. The mechanism for its anti-inflammatory effects has already been reported. In this study, we confirmed the efficacy of Patrinia villosa (Thunb.) Juss ethanol extract (Pv-EE) for inducing autophagy and investigate its anti-melanogenic properties. Melanin secretion and content were investigated using cells from the melanoma cell line B16F10. Pv-EE inhibited melanin in melanogenesis induced by α-melanocyte-stimulating hormone (α-MSH). The mechanism of inhibition of Pv-EE was confirmed by suppressing the mRNA of microphthalmia-associated transcription factor (MITF), decreasing the phosphorylation level of CREB, and increasing the phosphorylation of ERK. Finally, it was confirmed that Pv-EE induces autophagy through the autophagy markers LC3B and p62, and that the anti-melanogenic effect of Pv-EE is inhibited by the autophagy inhibitor 3-methyl adenine (3-MA). These results suggest that Pv-EE may be used as a skin protectant due to its anti-melanin properties including autophagy.
Collapse
|
36
|
Xu X, Zhang J, Zhang Z, Wang M, Liu Y, Li X. Systems pharmacology in combination with proteomics reveals underlying mechanisms of Xihuang pill against triple-negative breast cancer. Bioengineered 2020; 11:1170-1188. [PMID: 33092442 PMCID: PMC8291799 DOI: 10.1080/21655979.2020.1834726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Xihuang pill (XHP), a traditional Chinese herbal formula, has been clinically used as an adjuvant therapy against triple-negative breast cancer (TNBC) via inhibiting cancer cell invasion and proliferation, as well as promoting cancer cell apoptosis. However, its anti-TNBC bio-active ingredients and possible mechanisms are still unclear. Herein, the hub bio-active compounds and underlying mechanisms of XHP against TNBC were systematically elucidated by integrating systems pharmacology approach and in vitro proteomics analysis. Using systems pharmacology analysis and molecular docking evaluation, 28 bio-active compounds and 10 potential therapeutic targets of XHP were identified. Functional analysis showed that the core therapeutic targets against TNBC were mainly involved in epidermal growth factor receptor (EGFR)-phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway to prevent cancer cell proliferation and angiogenesis, as well as to enhance cancer cell apoptosis. The in vitro proteomics analysis identified 153 differentially expressed proteins (DEPs), including HASP90AA1, AKT1, and EGFR, which were also identified as therapeutic targets against TNBC through systems pharmacology analysis. Protein function analysis showed that the DEPs were mainly involved in PI3K-AKT signaling pathway, which was consistent with the result of systems pharmacology, suggesting the reliability of systems pharmacology analysis. Taken together, these findings uncover the underlying mechanism of XHP against TNBC, and provide a scientific method for the rational development of traditional Chinese medicine.
Collapse
Affiliation(s)
- Xingchao Xu
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University , Tai'an, China
| | - Jimei Zhang
- School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences , Tai'an, China
| | - Zhenhua Zhang
- Department of Graduate Student Affairs, Shandong First Medical University & Shandong Academy of Medical Sciences , Tai'an, China
| | - Meng Wang
- Department of Graduate Student Affairs, Shandong First Medical University & Shandong Academy of Medical Sciences , Tai'an, China
| | - Yaping Liu
- Department of Graduate Student Affairs, Shandong First Medical University & Shandong Academy of Medical Sciences , Tai'an, China
| | - Xiangqi Li
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University , Tai'an, China
| |
Collapse
|
37
|
STAT3 Differentially Regulates TLR4-Mediated Inflammatory Responses in Early or Late Phases. Int J Mol Sci 2020; 21:ijms21207675. [PMID: 33081347 PMCID: PMC7589049 DOI: 10.3390/ijms21207675] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptor 4 (TLR4) signaling is an important therapeutic target to manage lipopolysaccharide (LPS)-induced inflammation. The transcription factor signal transducer and activator of transcription 3 (STAT3) has been identified as an important regulator of various immune-related diseases and has generated interest as a therapeutic target. Here, we investigated the time-dependent roles of STAT3 in LPS-stimulated RAW264.7 macrophages. STAT3 inhibition induced expression of the pro-inflammatory genes iNOS and COX-2 at early time points. STAT3 depletion resulted in regulation of nuclear translocation of nuclear factor (NF)-κB subunits p50 and p65 and IκBα/Akt/PI3K signaling. Moreover, we found that one Src family kinase, Lyn kinase, was phosphorylated in STAT3 knockout macrophages. In addition to using pharmacological inhibition of NF-κB, we found out that STAT3KO activation of NF-κB subunit p50 and p65 and expression of iNOS was significantly inhibited; furthermore, Akt tyrosine kinase inhibitors also inhibited iNOS and COX-2 gene expression during early time points of LPS stimulation, demonstrating an NF-κB- Akt-dependent mechanism. On the other hand, iNOS expression was downregulated after prolonged treatment with LPS. Activation of NF-κB signaling was also suppressed, and consequently, nitric oxide (NO) production and cell invasion were repressed. Overall, our data indicate that STAT3 differentially regulates early- and late-phase TLR4-mediated inflammatory responses.
Collapse
|
38
|
Water Extract of Lotus Leaf Alleviates Dexamethasone-Induced Muscle Atrophy via Regulating Protein Metabolism-Related Pathways in Mice. Molecules 2020; 25:molecules25204592. [PMID: 33050143 PMCID: PMC7587191 DOI: 10.3390/molecules25204592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
Muscle atrophy is an abnormal condition characterized by loss of skeletal muscle mass and function and is primarily caused by injury, malnutrition, various diseases, and aging. Leaf of lotus (Nelumbo nucifera Gaertn), which has been used for medicinal purposes, contains various active ingredients, including polyphenols, and is reported to exert an antioxidant effect. In this study, we investigated the effect of water extract of lotus leaf (LL) on muscle atrophy and the underlying molecular mechanisms of action. Amounts of 100, 200, or 300 mg/kg/day LL were administered to dexamethasone (DEX)-induced muscle atrophy mice for 4 weeks. Micro-computed tomography (CT) analysis revealed that the intake of LL significantly increased calf muscle volume, surface area, and density in DEX-induced muscle atrophy mice. Administration of LL recovered moving distance, grip strength, ATP production, and body weight, which were decreased by DEX. In addition, muscle damage caused by DEX was also improved by LL. LL reduced the protein catabolic pathway by suppressing gene expression of muscle atrophy F-Box (MAFbx; atrogin-1), muscle RING finger 1 (MuRF1), and forkhead box O (FoxO)3a, as well as phosphorylation of AMP-activated kinase (AMPK). The AKT-mammalian target of the rapamycin (mTOR) signal pathway, which is important for muscle protein synthesis, was increased in LL-administered groups. The HPLC analysis and pharmacological test revealed that quercetin 3-O-beta-glucuronide (Q3G) is a major active component in LL. Thus, Q3G decreased the gene expression of atrogin-1 and MuRF1 and phosphorylation of AMPK. This compound also increased phosphorylation levels of mTOR and its upstream enzyme AKT in DEX-treated C2C12 cells. We identified that LL improves muscle wasting through regulation of muscle protein metabolism in DEX-induced muscle atrophy mice. Q3G is predicted to be one of the major active phenolic components in LL. Therefore, we propose LL as a supplement or therapeutic agent to prevent or treat muscle wasting, such as sarcopenia.
Collapse
|
39
|
Yang WS, Kim JH, Jeong D, Hong YH, Park SH, Yang Y, Jang YJ, Kim JH, Cho JY. 3-Deazaadenosine, an S-adenosylhomocysteine hydrolase inhibitor, attenuates lipopolysaccharide-induced inflammatory responses via inhibition of AP-1 and NF-κB signaling. Biochem Pharmacol 2020; 182:114264. [PMID: 33035507 DOI: 10.1016/j.bcp.2020.114264] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023]
Abstract
3-Deazadenosine (3-DA) is a general methylation inhibitor that depletes S-adenosylmethionine, a methyl donor, by blocking S-adenosylhomocysteine hydrolase (SAHH). In this study, we investigated the inhibitory activity and molecular mechanisms of 3-DA in inflammatory responses. 3-DA suppressed the secretion of inflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide-treated RAW264.7 cells and phorbol 12-myristate 13-acetate (PMA)-differentiated U937 cells. It also reduced mRNA expression of inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α, interleukin-1β (IL-1 β), and IL-6, indicating that 3-DA has anti-inflammatory properties in murine and human macrophages. Moreover, 3-DA strongly blocked AP-1 and NF-κB luciferase activity under PMA-, MyD88-, and TRIF-stimulated conditions and decreased the translocation of c-Jun, c-Fos, p65, and p50 into the nucleus. In addition, the p-ERK level in AP-1 signaling and the p-IκBα level in NF-kB signaling were diminished by 3-DA treatment. Interestingly, 3-DA did not alter the phosphorylation of MEK1/2, an ERK modulator, or IKKα/β, an IκBα regulator. Instead, 3-DA prevented MEK1/2 and IKKα/β from combining with ERK and IκBα, respectively, and directly suppressed MEK1/2 and IKKα/β kinase activity. These results indicate that MEK1/2 and IKKα/β are direct targets of 3-DA. In addition, suppression of SAHH by siRNA or treatment with adenosine dialdehyde, another SAHH inhibitor, showed inhibitory patterns against p-ERK and IκBα similar to those of 3-DA. Taken together, this study demonstrates that 3-DA inhibits AP-1 and NF-κB signaling by directly blocking MEK1/2 and IKKα/β or indirectly mediating SAHH, resulting in anti-inflammatory activity.
Collapse
Affiliation(s)
- Woo Seok Yang
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hye Kim
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Deok Jeong
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yoonyong Yang
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Young-Jin Jang
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Jong-Hoon Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
40
|
PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis 2020; 11:797. [PMID: 32973135 PMCID: PMC7515865 DOI: 10.1038/s41419-020-02998-6] [Citation(s) in RCA: 411] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) is the dominant challenge in the failure of chemotherapy in cancers. Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase that spreads intracellular signal cascades and regulates a variety of cellular processes. PI3Ks are considered significant causes of chemoresistance in cancer therapy. Protein kinase B (AKT) is also a significant downstream effecter of PI3K signaling, and it modulates several pathways, including inhibition of apoptosis, stimulation of cell growth, and modulation of cellular metabolism. This review highlights the aberrant activation of PI3K/AKT as a key link that modulates MDR. We summarize the regulation of numerous major targets correlated with the PI3K/AKT pathway, which is further related to MDR, including the expression of apoptosis-related protein, ABC transport and glycogen synthase kinase-3 beta (GSK-3β), synergism with nuclear factor kappa beta (NF-κB) and mammalian target of rapamycin (mTOR), and the regulation of glycolysis.
Collapse
|
41
|
Sharma A, Lee HJ. Ginsenoside Compound K: Insights into Recent Studies on Pharmacokinetics and Health-Promoting Activities. Biomolecules 2020; 10:E1028. [PMID: 32664389 PMCID: PMC7407392 DOI: 10.3390/biom10071028] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Ginseng (Panax ginseng) is an herb popular for its medicinal and health properties. Compound K (CK) is a secondary ginsenoside biotransformed from major ginsenosides. Compound K is more bioavailable and soluble than its parent ginsenosides and hence of immense importance. The review summarizes health-promoting in vitro and in vivo studies of CK between 2015 and 2020, including hepatoprotective, anti-inflammatory, anti-atherosclerosis, anti-diabetic, anti-cancer, neuroprotective, anti-aging/skin protective, and others. Clinical trial data are minimal and are primarily based on CK-rich fermented ginseng. Besides, numerous preclinical and clinical studies indicating the pharmacokinetic behavior of CK, its parent compound (Rb1), and processed ginseng extracts are also summarized. With the limited evidence available from animal and clinical studies, it can be stated that CK is safe and well-tolerated. However, lower water solubility, membrane permeability, and efflux significantly diminish the efficacy of CK and restrict its clinical application. We found that the use of nanocarriers and cyclodextrin for CK delivery could overcome these limitations as well as improve the health benefits associated with them. However, these derivatives have not been clinically evaluated, thus requiring a safety assessment for human therapy application. Future studies should be aimed at investigating clinical evidence of CK.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea;
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Korea;
- Institute for Aging and Clinical Nutrition Research, Gachon University, Gyeonggi-do 13120, Korea
| |
Collapse
|
42
|
Kim E, Jang J, Park JG, Kim KH, Yoon K, Yoo BC, Cho JY. Protein Arginine Methyltransferase 1 (PRMT1) Selective Inhibitor, TC-E 5003, Has Anti-Inflammatory Properties in TLR4 Signaling. Int J Mol Sci 2020; 21:ijms21093058. [PMID: 32357521 PMCID: PMC7246892 DOI: 10.3390/ijms21093058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/19/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022] Open
Abstract
Protein arginine methyltransferase 1 (PRMT1) is the most predominant PRMT and is type I, meaning it generates monomethylarginine and asymmetric dimethylarginine. PRMT1 has functions in oxidative stress, inflammation and cancers, and modulates diverse diseases; consequently, numerous trials to develop PRMT1 inhibitors have been attempted. One selective PRMT1 inhibitor is N,N′-(Sulfonyldi-4,1-phenylene)bis(2-chloroacetamide), also named TC-E 5003 (TC-E). In this study, we investigated whether TC-E regulated inflammatory responses. Nitric oxide (NO) production was evaluated by the Griess assay and the inflammatory gene expression was determined by conducting RT-PCR. Western blot analyzing was carried out for inflammatory signaling exploration. TC-E dramatically reduced lipopolysaccharide (LPS)-induced NO production and the expression of inflammatory genes (inducible NO synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α and interleukin (IL)-6) as determined using RT-PCR. TC-E downregulated the nuclear translocation of the nuclear factor (NF)-κB subunits p65 and p50 and the activator protein (AP)-1 transcriptional factor c-Jun. Additionally, TC-E directly regulated c-Jun gene expression following LPS treatment. In NF-κB signaling, the activation of IκBα and Src was attenuated by TC-E. Taken together, these data show that TC-E modulates the lipopolysaccharide (LPS)-induced AP-1 and NF-κB signaling pathways and could possibly be further developed as an anti-inflammatory compound.
Collapse
Affiliation(s)
- Eunji Kim
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
| | - Jiwon Jang
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
| | - Jae Gwang Park
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Kyung-Hee Kim
- Proteomic Analysis Team, Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Keejung Yoon
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
| | - Byong Chul Yoo
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Korea;
- Correspondence: (B.C.Y.); (J.Y.C.); Tel.: +82-31-920-2342 (B.C.Y.); +82-31-290-7876 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (E.K.); (J.J.); (K.Y.)
- Correspondence: (B.C.Y.); (J.Y.C.); Tel.: +82-31-920-2342 (B.C.Y.); +82-31-290-7876 (J.Y.C.)
| |
Collapse
|
43
|
Photoaging Protective Effects of Ranunculus bulumei Methanol Extract. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1761785. [PMID: 32328122 PMCID: PMC7157803 DOI: 10.1155/2020/1761785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/01/2022]
Abstract
Ultraviolet B (UVB) radiation is the main cause of photoaging processes including cellular senescence, skin drying, collagen degradation, melanogenesis, and inflammation. These responses occur because UVB induces a change in expression of aging-related genes through regulation of signal pathways such as that of mitogen-activated protein kinases- (MAPKs-) activator protein 1 (AP-1). Ranunculus bulumei, which is used as an herb in Indonesia, belongs to the Ranunculaceae family, which has been reported to perform various physiological effects including antioxidant and anti-inflammation. However, data on the pharmaceutical and cosmeceutical utility of Ranunculus bulumei have not been reported. Therefore, we evaluated the antiaging efficacy of RB-ME, a methanol extract of Ranunculus bulumei. Rb-ME attenuated MMP9 and COX-2 gene expression but enhanced SIRT1 and type-1 collagen in UVB-irradiated HaCaT cells. Rb-ME regulated these gene expressions through inhibition of p38 phosphorylation and inactivation of AP-1. In addition, mRNA expression of HAS-2 and -3, which are involved in skin hydration, was elevated in Rb-ME-treated HaCaT cells. Rb-ME also inhibited melanogenesis by suppression of tyrosinase, MITF, and TYRP-1 mRNA in B16F10 cells under α-MSH treatment. Taken together, these results indicate that Rb-ME has a protective effect on some UVB-induced skin photoaging events such as inflammation, collagen degradation, cellular senescence, skin drying, and melanin production through inhibition of the p38-AP-1 signal cascade, indicating that Rb-ME can be used as an active ingredient for antiaging cosmetics.
Collapse
|
44
|
Kim H, Shin KK, Kim HG, Jo M, Kim JK, Lee JS, Choung ES, Li WY, Lee SW, Kim KH, Yoo BC, Cho JY. Src/NF-κB-Targeted Anti-Inflammatory Effects of Potentilla glabra var. Mandshurica (Maxim.) Hand.-Mazz. Ethanol Extract. Biomolecules 2020; 10:biom10040648. [PMID: 32331432 PMCID: PMC7225925 DOI: 10.3390/biom10040648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a complex protective response of body tissues to harmful stimuli. Acute inflammation can progress to chronic inflammation, which can lead to severe disease. Therefore, this research focuses on the development of anti-inflammatory drugs, and natural extracts have been explored as potential agents. No study has yet examined the inflammation-associated pharmacological activity of Potentilla glabra Var. mandshurica (Maxim.) Hand.-Mazz ethanol extract (Pg-EE). To examine the mechanisms by which Pg-EE exerts anti-inflammatory effects, we studied its activities in lipopolysaccharide (LPS)-treated murine macrophage RAW264.7 cells and an HCl/EtOH-induced gastritis model. LPS-triggered nitric oxide (NO) release and mRNA levels of inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β) in RAW264.7 cells were suppressed by Pg-EE in a dose-dependent manner. Using a luciferase assay and western blot assay, we found that the NF-κB pathway was inhibited by Pg-EE, particularly by the decreased level of phosphorylated proteins of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) subunits (p65 and p50), inhibitor of kappa B alpha (IκBα), p85, and Src. Using an overexpression strategy, cellular thermal shift assay, and immunoprecipitation analysis, we determined that the anti-inflammatory effect of Pg-EE was mediated by the inhibition of Src. Pg-EE further showed anti-inflammatory effects in vivo in the HCl/EtOH-induced gastritis mouse model. In conclusion, Pg-EE exerts anti-inflammatory activities by targeting Src in the NF-κB pathway, and these results suggest that Pg-EE could be used as an anti-inflammatory herbal medicine.
Collapse
Affiliation(s)
- Haeyeop Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (K.K.S.); (H.G.K.); (M.J.); (J.K.K.)
| | - Kon Kuk Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (K.K.S.); (H.G.K.); (M.J.); (J.K.K.)
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (K.K.S.); (H.G.K.); (M.J.); (J.K.K.)
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| | - Minkyeong Jo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (K.K.S.); (H.G.K.); (M.J.); (J.K.K.)
| | - Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (K.K.S.); (H.G.K.); (M.J.); (J.K.K.)
| | - Jong Sub Lee
- DanjoungBio Co., Ltd., Wonju 26303, Korea; (J.S.L.); (E.S.C.)
| | - Eui Su Choung
- DanjoungBio Co., Ltd., Wonju 26303, Korea; (J.S.L.); (E.S.C.)
| | - Wan Yi Li
- Institute of Medicinal Plants, Yunnan Academy of Agricultural Sciences, Kunming 650224, China;
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Kyung-Hee Kim
- Biomarker Branch, Research Institute, National Cancer Center, Goyang 10408, Korea;
| | - Byong Chul Yoo
- Biomarker Branch, Research Institute, National Cancer Center, Goyang 10408, Korea;
- Correspondence: (B.C.Y.); (J.Y.C.); Tel.: +82-31-920-2342 (B.C.Y.); +82-31-290-7876 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (H.K.); (K.K.S.); (H.G.K.); (M.J.); (J.K.K.)
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
- Correspondence: (B.C.Y.); (J.Y.C.); Tel.: +82-31-920-2342 (B.C.Y.); +82-31-290-7876 (J.Y.C.)
| |
Collapse
|
45
|
Loratadine, an antihistamine drug, exhibits anti-inflammatory activity through suppression of the NF- kB pathway. Biochem Pharmacol 2020; 177:113949. [PMID: 32251678 DOI: 10.1016/j.bcp.2020.113949] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
Abstract
Loratadine is an antihistamine drug that shows promise as an anti-inflammatory drug, but supportive studies are lacking. We elucidated the effects and mechanisms by which loratadine inhibits inflammatory responses. Molecular components were evaluated in macrophages by nitric oxide assay, polymerase chain reaction, luciferase assay, immunoblotting, overexpression strategies and cellular thermal shift assay. At the molecular level, loratadine reduced the levels of nitric oxide, iNOS, IL-1β, TNF-α, IL-6, and COX-2 in RAW264.7 cells treated with lipopolysaccharide. Loratadine also specifically inhibited the NF-kB pathway, targeting the Syk and Src proteins. Furthermore, loratadine bound Src in the bridge between SH2 and SH3, and bound Syk in the protein tyrosine kinase domain. The NF-kB signaling pathway was assessed along with putative binding sites through a docking approach. The anti-inflammatory effect of loratadine was tested using mouse models of gastritis, hepatitis, colitis, and peritonitis. Stomach tissue histopathology, liver morphology, and colon length in the loratadine group were improved over the group without loratadine treatment. Taken together, loratadine inhibited the inflammatory response through the NF-kB pathway by binding with the Syk and Src proteins.
Collapse
|
46
|
Hong YH, Kim JH, Cho JY. Ranunculus bulumei Methanol Extract Exerts Anti-Inflammatory Activity by Targeting Src/Syk in NF-κB Signaling. Biomolecules 2020; 10:biom10040546. [PMID: 32260181 PMCID: PMC7226355 DOI: 10.3390/biom10040546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Ranunculus bulumei is a flowering plant that belongs to the Ranunculus species. Several Ranunculus species, such as R. aquatilis and R. muricatus, have traditionally been used to treat fever and rheumatism throughout Asia, suggesting that plants belonging to the Ranunculus species may have anti-inflammatory effects. To our knowledge, the pharmacological activity of R. bulumei has not been reported. Therefore, in this study, we aim to assess the anti-inflammatory activity of a methanol extract that was derived from R. bulumei (Rb-ME) in macrophage-mediated inflammatory responses and to identify the molecular mechanism that underlies any anti-inflammatory action. (2) Methods: The anti-inflammatory efficacy of Rb-ME was evaluated while using in vitro and in vivo experiments. The RAW264.7 cells and peritoneal macrophages were stimulated by lipopolysaccharide (LPS). In addition, LPS-induced peritonitis and HCl/EtOH-triggered gastritis models were produced. A nitric oxide (NO) assay, real-time PCR, luciferase reporter gene assay, western blot analysis, plasmid overexpression strategy, and in vitro kinase assay were used to determine the molecular mechanisms and target molecules of Rb-ME. The phytochemical active ingredients of Rb-ME were also identified by high performance liquid chromatograph (HPLC). (3) Results: Rb-ME reduced the production of NO and mRNA expression of iNOS, COX-2, IL-1β, and IL-6 without cytotoxicity. The protein secretion of TNF-α and IL-6 was also decreased by Rb-ME. HPLC analysis indicates that quercetin, luteolin, and kaempferol are the main active ingredients in the anti-inflammatory efficacy of Rb-ME. Rb-ME also blocked MyD88-induced NF-κB promoter activity and nuclear translocation of NF-κB subunits (p65 and p50). Moreover, Rb-ME reduced the phosphorylation of IκBα, Akt, p85, Src, and Syk, which are NF-κB upstream signaling molecules in LPS-activated RAW264.7 cells. According to the in vitro kinase assay, Rb-ME directly inhibits Syk kinase activity. The oral administration of Rb-ME alleviated inflammatory responses and the levels of p-IκBα in mice with LPS-induced peritonitis and HCl/EtOH-induced gastritis. (4) Conclusions Rb-ME has anti-inflammatory capacity by suppressing NF-κB signaling and it has been found to target Src and Syk in the NF-κB pathway. Based on this efficacy, Rb-ME could be developed as an anti-inflammatory herbal medicine.
Collapse
|
47
|
Yu T, Wang Z, Jie W, Fu X, Li B, Xu H, Liu Y, Li M, Kim E, Yang Y, Cho JY. The kinase inhibitor BX795 suppresses the inflammatory response via multiple kinases. Biochem Pharmacol 2020; 174:113797. [DOI: 10.1016/j.bcp.2020.113797] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
|
48
|
Antiwrinkle and Antimelanogenesis Effects of Tyndallized Lactobacillus acidophilus KCCM12625P. Int J Mol Sci 2020; 21:ijms21051620. [PMID: 32120828 PMCID: PMC7084287 DOI: 10.3390/ijms21051620] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
UVB irradiation can induce generation of reactive oxygen species (ROS) that cause skin aging or pigmentation. Lactobacillus acidophilus is a well-known probiotic strain that regulates skin health through antimicrobial peptides and organic products produced by metabolism and through immune responses. In this study, we investigated the antioxidative, antiwrinkle, and antimelanogenesis effects of tyndallized Lactobacillus acidophilus KCCM12625P (AL). To analyze the effects of AL on UV irradiation-induced skin wrinkle formation in vitro, human keratinocytes and human dermal fibroblasts were exposed to UVB. Subsequent treatment with AL induced antiwrinkle effects by regulating wrinkle-related genes such as matrix metalloproteinases (MMPs), SIRT-1, and type 1 procollagen (COL1AL). In addition, Western blotting assays confirmed that regulation of MMPs by AL in keratinocytes was due to regulation of the AP-1 signaling pathway. Furthermore, we confirmed the ability of AL to regulate melanogenesis in B16F10 murine melanoma cells treated with α-melanocyte-stimulating hormone (α-MSH). In particular, AL reduced the mRNA expression of melanogenesis-related genes such as tyrosinase, TYRP-1, and TYRP-2. Finally, we used Western blotting assays to confirm that the antimelanogenesis role of AL was due to its regulation of the cyclic adenosine monophosphate (cAMP) signaling pathway. Collectively, these results indicate that AL has an antiwrinkle activity in damaged skin and can inhibit melanogenesis. Thus, AL should be considered an important substance for potential use in anti-aging drugs or cosmetics.
Collapse
|