1
|
Kwon OW, Hwang Park Y, Kim D, Kwon HY, Yang HJ. Korean Red Ginseng and Rb1 restore altered social interaction, gene expressions in the medial prefrontal cortex, and gut metabolites under post-weaning social isolation in mice. J Ginseng Res 2024; 48:481-493. [PMID: 39263309 PMCID: PMC11385175 DOI: 10.1016/j.jgr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/18/2024] [Accepted: 03/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background Post-weaning social isolation (SI) reduces sociability, gene expressions including myelin genes in the medial prefrontal cortex (mPFC), and alters microbiome compositions in rodent models. Korean Red Ginseng (KRG) and its major ginsenoside Rb1 have been reported to affect myelin formation and gut metabolites. However, their effects under post-weaning SI have not been investigated. This study investigated the effects of KRG and Rb1 on sociability, gene expressions in the mPFC, and gut metabolites under post-weaning SI. Methods C57BL/6J mice were administered with water or KRG (150, 400 mg/kg) or Rb1 (0.1 mg/kg) under SI or regular environment (RE) for 2 weeks during the post-weaning period (P21-P35). After this period, mice underwent a sociability test, and then brains and ceca were collected for qPCR/immunohistochemistry and non-targeted metabolomics, respectively. Results SI reduced sociability compared to RE; however, KRG (400 mg/kg) and Rb1 significantly restored sociability under SI. In the mPFC, expressions of genes related to myelin, neurotransmitter, and oxidative stress were significantly reduced in mice under SI compared to RE conditions. Under SI, KRG and Rb1 recovered the altered expressions of several genes in the mPFC. In gut metabolomics, 313 metabolites were identified as significant among 3027 detected metabolites. Among the significantly changed metabolites in SI, some were recovered by KRG or Rb1, including metabolites related to stress axis, inflammation, and DNA damage. Conclusion Altered sociability, gene expression levels in the mPFC, and gut metabolites induced by two weeks of post-weaning SI were at least partially recovered by KRG and Rb1.
Collapse
Affiliation(s)
- Oh Wook Kwon
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Youngja Hwang Park
- Metabolomics Laboratory, College of Pharmacy, Korea University, Sejong, Republic of Korea
- Omics Research Center, Korea University, Sejong, Republic of Korea
| | - Dalnim Kim
- Korea Institute of Brain Science, Seoul, Republic of Korea
| | - Hyog Young Kwon
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyun-Jeong Yang
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
- Korea Institute of Brain Science, Seoul, Republic of Korea
- Department of Integrative Healthcare, University of Brain Education, Cheonan, Republic of Korea
| |
Collapse
|
2
|
Shin MS, Lee Y, Cho IH, Yang HJ. Brain plasticity and ginseng. J Ginseng Res 2024; 48:286-297. [PMID: 38707640 PMCID: PMC11069001 DOI: 10.1016/j.jgr.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 05/07/2024] Open
Abstract
Brain plasticity refers to the brain's ability to modify its structure, accompanied by its functional changes. It is influenced by learning, experiences, and dietary factors, even in later life. Accumulated researches have indicated that ginseng may protect the brain and enhance its function in pathological conditions. There is a compelling need for a more comprehensive understanding of ginseng's role in the physiological condition because many individuals without specific diseases seek to improve their health by incorporating ginseng into their routines. This review aims to deepen our understanding of how ginseng affects brain plasticity of people undergoing normal aging process. We provided a summary of studies that reported the impact of ginseng on brain plasticity and related factors in human clinical studies. Furthermore, we explored researches focused on the molecular mechanisms underpinning the influence of ginseng on brain plasticity and factors contributing to brain plasticity. Evidences indicate that ginseng has the potential to enhance brain plasticity in the context of normal aging by mediating both central and peripheral systems, thereby expecting to improve age-related declines in brain function. Moreover, given modern western diet can damage neuroplasticity in the long term, ginseng can be a beneficial supplement for better brain health.
Collapse
Affiliation(s)
- Myoung-Sook Shin
- College of Korean Medicine, Gachon University, Seongnam, Republic of Korea
| | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Jeong Yang
- Department of Integrative Bioscience, University of Brain Education, Cheonan, Republic of Korea
- Department of Integrative Healthcare, University of Brain Education, Cheonan, Republic of Korea
- Korea Institute of Brain Science, Seoul, Republic of Korea
| |
Collapse
|
3
|
Musuroglu Keloglan S, Sahin L, Kocahan S, Annac E, Tirasci N, Pekmezekmek AB. Effect of caffeine on hippocampal memory and levels of gene expression in social isolation stress. Int J Dev Neurosci 2023; 83:641-652. [PMID: 37575074 DOI: 10.1002/jdn.10292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Caffeine (Cf) antagonizes the adenosine receptors and has neuroprotective properties. The effect of Cf has been seen on stress-induced deficits of cognitive. In this study, we have investigated the effect of Cf on learning and memory functions induced by social isolation (SI) stress. MATERIALS AND METHODS In the present study, 21-day-old Wistar albino male rats (n = 28) were divided into four groups: the control (C), the SI, the Cf, and the social isolation + caffeine (SICf). Cf (0.3 g/L) was added to the drinking water of the experimental animals for 4 weeks. The learning and memory functions were assessed using the Morris Water Maze Test (MWMT). Following, was performed histopathological evaluation and determined hippocampal gene expression levels by RT-qPCR. RESULTS According to MWMT findings, the time spent in the quadrant where the platform removed was decreased in the SI group compared with the C (p < 0.05). Histological evaluation showed morphological changes in SI by irregular appearance, cellular edema, and dark pycnotic appearance of nuclei in some neurons. However, it was observed that the histological structure of most of the neurons in the SICf group was similar to the C and Cf groups. Hippocampal SNAP25 expression was decreased in the Cf and SICf groups than in the C group (p < 0.05). The GFAP expression was increased in the SICf group than in the C group (p < 0.05). NR2A increased in the SI and SICf groups compared with C and Cf groups (p < 0.05). NR2B expression decreased in the Cf group compared with C and SI groups (p < 0.05). CONCLUSIONS SI impaired spatial memory and causes morphological changes in adolescent rats, but this effect of isolation was not seen in Cf-treated animals. The effects of SI on NR2A, Cf on NR2B, and SNAP25 are remarkable. Here, we propose that the impaired effect of SI on spatial memory may be mediated by NR2A, but further studies are needed to explain this effect.
Collapse
Affiliation(s)
| | - Leyla Sahin
- Department of Physiology, Faculty of Medicine, Mersin University, Mersin, Turkey
| | - Sayad Kocahan
- Department of Physiology, Faculty of Gulhane Medicine, Health Sciences University, Ankara, Turkey
| | - Ebru Annac
- Department of Histology and Embryology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Nurhan Tirasci
- Department of Zootechnics and Animal Nutrition, Institute of Health Sciences, Fırat University, Elazig, Turkey
| | | |
Collapse
|
4
|
da Costa VF, Ramírez JCC, Ramírez SV, Avalo-Zuluaga JH, Baptista-de-Souza D, Canto-de-Souza L, Planeta CS, Rodríguez JLR, Nunes-de-Souza RL. Emotional- and cognitive-like responses induced by social defeat stress in male mice are modulated by the BNST, amygdala, and hippocampus. Front Integr Neurosci 2023; 17:1168640. [PMID: 37377628 PMCID: PMC10291097 DOI: 10.3389/fnint.2023.1168640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Chronic exposure to social defeat stress (SDS) has been used to investigate the neurobiology of depressive- and anxiety-like responses and mnemonic processes. We hypothesized that these affective, emotional, and cognitive consequences induced by SDS are regulated via glutamatergic neurons located in the bed nucleus of the stria terminalis (BNST), amygdaloid complex, and hippocampus in mice. Methods Here, we investigated the influence of chronic SDS on (i) the avoidance behavior assessed in the social interaction test, (ii) the anxiety-like behavior (e.g., elevated plus-maze, and open field tests) (iii) depressive-like behaviors (e.g., coat state, sucrose splash, nesting building, and novel object exploration tests), (iv) the short-term memory (object recognition test), (v) ΔFosB, CaMKII as well as ΔFosB + CaMKII labeling in neurons located in the BNST, amygdaloid complex, dorsal (dHPC) and the ventral (vHPC) hippocampus. Results The main results showed that the exposure of mice to SDS (a) increased defensive and anxiety-like behaviors and led to memory impairment without eliciting clear depressive-like or anhedonic effects; (b) increased ΔFosB + CaMKII labeling in BNST and amygdala, suggesting that both areas are strongly involved in the modulation of this type of stress; and produced opposite effects on neuronal activation in the vHPC and dHPC, i.e., increasing and decreasing, respectively, ΔFosB labeling. The effects of SDS on the hippocampus suggest that the vHPC is likely related to the increase of defensive- and anxiety-related behaviors, whereas the dHPC seems to modulate the memory impairment. Discussion Present findings add to a growing body of evidence indicating the involvement of glutamatergic neurotransmission in the circuits that modulate emotional and cognitive consequences induced by social defeat stress.
Collapse
Affiliation(s)
- Vinícius Fresca da Costa
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil
| | - Johana Caterin Caipa Ramírez
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil
| | - Stephany Viatela Ramírez
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil
| | - Julian Humberto Avalo-Zuluaga
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil
| | - Daniela Baptista-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
| | - Lucas Canto-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
| | - Cleopatra S. Planeta
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil
| | | | - Ricardo Luiz Nunes-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil
| |
Collapse
|
5
|
Ugwu PI, Ben-Azu B, Ugwu SU, Uruaka CI, Nworgu CC, Okorie PO, Okafor KO, Anachuna KK, Elendu MU, Ugwu AO, Anyaehie UB, Nwankwo AA, Osim EE. Putative mechanisms involved in the psychopathologies of mice passively coping with psychosocial defeat stress by quercetin. Brain Res Bull 2022; 183:127-141. [DOI: 10.1016/j.brainresbull.2022.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/15/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
|
6
|
Lee BR, Sung SJ, Hur KH, Kim SE, Ma SX, Kim SK, Ko YH, Kim YJ, Lee Y, Lee SY, Jang CG. Korean Red Ginseng inhibits methamphetamine addictive behaviors by regulating dopaminergic and NMDAergic system in rodents. J Ginseng Res 2022; 46:147-155. [PMID: 35058731 PMCID: PMC8753524 DOI: 10.1016/j.jgr.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 10/26/2022] Open
|
7
|
Electroacupuncture Ameliorates Depression-Like Behaviour in Rats by Enhancing Synaptic Plasticity via the GluN2B/CaMKII/CREB Signalling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2146001. [PMID: 34777532 PMCID: PMC8580672 DOI: 10.1155/2021/2146001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
Background Hippocampal synaptic plasticity during the pathological process of depression has received increasing attention. Hippocampal neuron atrophy and the reduction in synaptic density induced by chronic stress are important pathological mechanisms of depression. Electroacupuncture (EA) exerts beneficial effects on depression, but the mechanism is unclear. This study explored the effect of EA on synaptic plasticity and the potential mechanism. Methods Forty-eight SD rats were randomly divided into the control, chronic unpredictable mild stress (CUMS), EA, and fluoxetine (FLX) groups, and each group consisted of 12 rats. The sucrose preference test, open field test, and forced swimming test were used for the evaluation of depression-like behaviour, and Golgi and Nissl staining were used for the assessment of synaptic plasticity. Western blotting and immunofluorescence were conducted to detect proteins related to synaptic plasticity and to determine their effects on signalling pathways. Results We found that CUMS led to depression-like behaviours, including a reduced preference for sucrose, a prolonged immobility time, and reduced exploration activity. The dendritic spine densities and neuron numbers and the protein levels of MAP-2, PSD-95, and SYN were decreased in the hippocampi of rats with CUMS-induced depression, and these trends were reversed by EA. The molecular mechanism regulating this plasticity may involve the GluN2B/CaMKII/CREB signalling pathway. Conclusion These results suggest that EA can improve depression-like behaviour and hippocampal plasticity induced by CUMS, and the mechanism may be related to the GluN2B/CaMKII/CREB pathway.
Collapse
|
8
|
Hur KH, Kim SE, Ma SX, Lee BR, Ko YH, Seo JY, Kim SK, Kim YJ, Sung SJ, Lee Y, Jung YH, Lee YS, Lee SY, Jang CG. Methoxphenidine (MXP) induced abnormalities: Addictive and schizophrenia-related behaviours based on an imbalance of neurochemicals in the brain. Br J Pharmacol 2021; 178:3869-3887. [PMID: 33987827 DOI: 10.1111/bph.15528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Methoxphenidine is a dissociative-based novel psychoactive designer drug. Although fatal accidents from methoxphenidine abuse have been reported, recreational use of the drug continues. We aim to provide scientific supportfor legal regulation of recreational abuse of methoxphenidine by demonstrating its the pharmacological action. EXPERIMENTAL APPROACH Addictive potential of methoxphenidine was examined using intravenous self-administration test with rats and conditioned place preference test with mice. Further, a series of behavioural tests (open field test, elevated plus maze test, novel object recognition test, social interaction test and tail suspension test) performed to assess whether methoxphenidine caused schizophrenia-related symptoms in mice. Additionally, neurotransmitter enzyme-linked immunosorbent assay and western blot were used to confirm methoxphenidine-induced neurochemical changes in specific brain regions related to abnormal behaviours. KEY RESULTS Methoxphenidine caused addictive behaviours via reinforcing and rewarding effects. Consistently, methoxphenidine induced over-activation of dopamine pathways in the nuclear accumbens, indicating activation of the brain reward circuit. Also, methoxphenidine caused all categories of schizophrenia-related symptoms, including positive symptoms (hyperactivity, impulsivity), negative symptoms (anxiety, social withdrawal, depression) and cognitive impairment. Consistently, methoxphenidine led to the disruption of the hippocampal-prefrontal cortex pathway that is considered to be pathological involved in schizophrenia. CONCLUSIONS AND IMPLICATIONS We demonastrate that methoxphenidine causes addictive and schizophrenia-like behaviours and induces neurochemical changes in brain regions associated with these behaviours. We propose that methoxphenidine could be used in developing useful animal disease models and that it also requires legal restrictions on its recreational use.
Collapse
Affiliation(s)
- Kwang-Hyun Hur
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Seong-Eon Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Shi-Xun Ma
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Bo-Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Jee-Yeon Seo
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Young-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Su-Jeong Sung
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Youyoung Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Young Hoon Jung
- Organic and Medicinal Chemistry Laboratory, College of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Yong-Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy and Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|