1
|
Geng B, Zhao M, Wang J, Zhong T, Kang C, Wang Z, Ma X, Xia T. Ginsenoside Rh2 promotes cell apoptosis in T-cell acute lymphocytic leukaemia by MAPK and PI3K/AKT signalling pathways. Nat Prod Res 2024:1-9. [PMID: 39709631 DOI: 10.1080/14786419.2024.2440537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/07/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
T-cell acute lymphoblastic leukaemia (T-ALL) is a common childhood malignant tumour, which has poor prognosis and high recurrence rate. Ginsenoside Rh2 (GRh2), a bioactive ingredient of Panax ginseng has significant anti-tumour effect. In this study, we found that gene expressions of Jurkat cells were significantly changed in the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signalling pathways after 35 µm GRh2 treatment, involving in JUN, PIEN, AKT3 and MAPK8IP2. Target proteins including PI3K, AKT, ASK, caspase 8 and caspase 9 were bind tightly with GRh2 by molecular docking. Moreover, the protein expression ratios of p-PI3K/PI3K and p-AKT/AKT were significantly reduced, and the expression ratios of p-ASK1/ASK1, p-JNK/JNK and p-c-JUN/c-JUN, Bax/Bcl-2, and the levels of cleaved caspase 8, 9, 3 were increased significantly in GRh2-treated Jurkat cells. The results imply that GRh2 induced T-ALL apoptosis by activating the MAPK pathway and inhibiting the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Beibei Geng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Man Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Jun Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Chaoyan Kang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zizhen Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xin Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ting Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
2
|
Cheng S, Chen L, Ying J, Wang Y, Jiang W, Zhang Q, Zhang H, Wang J, Wang C, Wu H, Ye J, Zhang L. 20(S)-ginsenoside Rh2 ameliorates ATRA resistance in APL by modulating lactylation-driven METTL3. J Ginseng Res 2024; 48:298-309. [PMID: 38707638 PMCID: PMC11068957 DOI: 10.1016/j.jgr.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 05/07/2024] Open
Abstract
Background 20(S)-ginsenoside Rh2(GRh2), an effective natural histone deacetylase inhibitor, can inhibit acute myeloid leukemia (AML) cell proliferation. Lactate regulated histone lactylation, which has different temporal dynamics from acetylation. However, whether the high level of lactylation modification that we first detected in acute promyelocytic leukemia (APL) is associated with all-trans retinoic acid (ATRA) resistance has not been reported. Furthermore, Whether GRh2 can regulate lactylation modification in ATRA-resistant APL remains unknown. Methods Lactylation and METTL3 expression levels in ATRA-sensitive and ATRA-resistant APL cells were detected by Western blot analysis, qRT-PCR and CO-IP. Flow cytometry (FCM) and APL xenograft mouse models were used to determine the effect of METTL3 and GRh2 on ATRA-resistance. Results Histone lactylation and METTL3 expression levels were considerably upregulated in ATRA-resistant APL cells. METTL3 was regulated by histone lactylation and direct lactylation modification. Overexpression of METTL3 promoted ATRA-resistance. GRh2 ameliorated ATRA-resistance by downregulated lactylation level and directly inhibiting METTL3. Conclusions This study suggests that lactylation-modified METTL3 could provide a promising strategy for ameliorating ATRA-resistance in APL, and GRh2 could act as a potential lactylation-modified METTL3 inhibitor to ameliorate ATRA-resistance in APL.
Collapse
Affiliation(s)
- Siyu Cheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Langqun Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiahui Ying
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ying Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wenjuan Jiang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qi Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hong Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiahe Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chen Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Huimin Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing Ye
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Liang Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Allani M, Akhilesh, Tiwari V. Caspase-driven cancer therapies: Navigating the bridge between lab discoveries and clinical applications. Cell Biochem Funct 2024; 42:e3944. [PMID: 38348642 DOI: 10.1002/cbf.3944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Apoptosis is the cell's natural intrinsic regulatory mechanism of normal cells for programmed cell death, which plays an important role in cancer as a classical mechanism of tumor cell death causing minimal inflammation without causing damage to other cells in the vicinity. Induction of apoptosis by activation of caspases is one of the primary targets for cancer treatment. Over the years, a diverse range of natural, synthetic, and semisynthetic compounds and their derivatives have been investigated for their caspase-mediated apoptosis-induced anticancer activities. The review aims to compile the preclinical evidence and highlight the critical mechanistic pathways related to caspase-induced cell apoptosis in cancer treatment. The focus is placed on the key components of the mechanisms, including their chemical nature, and specific attention is given to phytochemicals derived from natural sources and synthetic and semisynthetic compounds. 180+ compounds from the past two decades with potential as anticancer agents are discussed in this review article. By summarizing the current knowledge and advancements in this field, this review provides a comprehensive overview of potential therapeutic strategies targeting apoptosis in cancer cells. The findings presented herein contribute to the ongoing efforts to combat cancer and stimulate further research into the development of effective and targeted anticancer therapies.
Collapse
Affiliation(s)
- Meghana Allani
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| |
Collapse
|
4
|
Nakhjavani M, Smith E, Yeo K, Tomita Y, Price TJ, Yool A, Townsend AR, Hardingham JE. Differential antiangiogenic and anticancer activities of the active metabolites of ginsenoside Rg3. J Ginseng Res 2024; 48:171-180. [PMID: 38465222 PMCID: PMC10920002 DOI: 10.1016/j.jgr.2021.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023] Open
Abstract
Background Epimers of ginsenoside Rg3 (Rg3) have a low bioavailability and are prone to deglycosylation, which produces epimers of ginsenoside Rh2 (S-Rh2 and R-Rh2) and protopanaxadiol (S-PPD and R-PPD). The aim of this study was to compare the efficacy and potency of these molecules as anti-cancer agents. Methods Crystal violet staining was used to study the anti-proliferatory action of the molecules on a human epithelial breast cancer cell line, MDA-MB-231, and human umbilical vein endothelial cells (HUVEC) and compare their potency. Cell death and cell cycle were studied using flow cytometry and mode of cell death was studied using live cell imaging. Anti-angiogenic effects of the drug were studied using loop formation assay. Molecular docking showed the interaction of these molecules with vascular endothelial growth factor receptor-2 (VEGFR2) and aquaporin (AQP) water channels. VEGF bioassay was used to study the interaction of Rh2 with VEGFR2, in vitro. Results HUVEC was the more sensitive cell line to the anti-proliferative effects of S-Rh2, S-PPD and R-PPD. The molecules induced necroptosis/necrosis in MDA-MB-231 and apoptosis in HUVEC. S-Rh2 was the most potent inhibitor of loop formation. In silico molecular docking predicted a good binding score between Rh2 or PPD and the ATP-binding pocket of VEGFR2. VEGF bioassay showed that Rh2 was an allosteric modulator of VEGFR2. In addition, SRh2 and PPD had good binding scores with AQP1 and AQP5, both of which play roles in cell migration and proliferation. Conclusion The combination of these molecules might be responsible for the anti-cancer effects observed by Rg3.
Collapse
Affiliation(s)
- Maryam Nakhjavani
- Molecular Oncology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA, Australia
| | - Eric Smith
- Molecular Oncology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Kenny Yeo
- Molecular Oncology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Yoko Tomita
- Molecular Oncology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Medical Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA, Australia
| | - Timothy J. Price
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Medical Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA, Australia
| | - Andrea Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Amanda R. Townsend
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Medical Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA, Australia
| | - Jennifer E. Hardingham
- Molecular Oncology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Dana SMMA, Meghdadi M, Kakhki SK, Khademi R. Anti-leukemia effects of ginsenoside monomer: A narrative review of pharmacodynamics study. CURRENT THERAPEUTIC RESEARCH 2024; 100:100739. [PMID: 38706463 PMCID: PMC11066596 DOI: 10.1016/j.curtheres.2024.100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 02/12/2024] [Indexed: 05/07/2024]
Abstract
Background Leukemia is a prevalent disease with high mortality and morbidity rates. Current therapeutic approaches are expensive and have side effects. Objective In this investigation, we reviewed studies that investigated the anticancer effects of ginsenoside derivatives against leukemia and also explained the three main Ginsenoside derivatives (ginsenoside Rg3, Rh2, and Rg1) separately. Methods An extensive search was conducted in Pubmed, Web of Science, and Google Scholar and relevant studies that investigated anticancer effects of ginsenoside derivatives against leukemia cancer were extracted and reviewed. Results Preclinical studies reported that ginsenoside derivatives can induce apoptosis, suppress the proliferation of cancer cells, and induce differentiation and cell cycle arrest in leukemia cells. in addition, it can suppress the chemokine activity and extramedullary infiltration of leukemia cells from bone marrow. using herbal medicine and its derivatives is a promising approach to current health problems. Conclusion This review shows that ginsenoside derivatives can potentially suppress the growth of leukemia cells via various pathways and can be applied as a new natural medicine for future clinical research.
Collapse
Affiliation(s)
| | - Mohammadreza Meghdadi
- Department of Hematology and Blood Banking, Faculty of Medical Science, Mashhad University of Medical Science, Mashhad, Iran
| | - Saeed Khayat Kakhki
- Department of Gerontological Nursing, School of Nursing, Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Reza Khademi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Yang L, Chen JJ, Sheng-Xian Teo B, Zhang J, Jiang M. Research Progress on the Antitumor Molecular Mechanism of Ginsenoside Rh2. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:217-230. [PMID: 38291582 DOI: 10.1142/s0192415x24500095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Cancer has evolved into a substantial public health concern as the second-leading cause of mortality globally. Radiotherapy and chemotherapy have been the two most widely used cancer therapies in recent years; however, both have drawbacks. Therefore, the focus has shifted to the creation of herbal medicines, the extraction of active ingredients, replacement therapy, and the adverse effects of these medications. Ginsenoside Rh2, which is extracted from ginseng, has been identified in many cancer cells. The immune system of the body is strengthened by ginsenoside Rh2, which can also cause the proliferation, death, and differentiation of tumor cells through various pathways. For instance, it inhibits the expression of the NF-[Formula: see text]B signaling pathway and induces cell apoptosis, affects the expression levels of mitochondrial apoptosis proteins Bcl-2 and Bax, and cooperates with the PD-1 blockade to reactivate T cells to promote an antitumor immune response. Furthermore, ginsenosides Rh2 has the effect of reversing the toxic effect of chemotherapy drugs on normal cells, reducing myocardial damage, and relieving bone marrow function suppression. For clinical applications, it is mainly used as an adjuvant drug for preoperative neoadjuvant chemotherapy, postoperative adjuvant chemotherapy, and rescue treatment of advanced cancer. This paper summarizes the pharmacological action and mechanism of ginsenosides Rh2 in all kinds of cancer and looks forward to its future development and application.
Collapse
Affiliation(s)
- Lan Yang
- Institute of Analytical Psychology, City University of Macau, Macau, P. R. China
| | - Jenny Jie Chen
- MSU Centre for Complementary and Alternative Medicine (MyCAM), Management and Science University, Shah Alam 40100, Malaysia
| | - Brian Sheng-Xian Teo
- MSU Centre for Complementary and Alternative Medicine (MyCAM), Management and Science University, Shah Alam 40100, Malaysia
| | - Jiong Zhang
- Department of Traditional Chinese Medicine Internal Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou 450000, P. R. China
| | - Mingqiang Jiang
- Department of Breast, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, P. R. China
| |
Collapse
|
7
|
Feng L, Zhu S, Ma J, Hong Y, Wan M, Qiu Q, Li H, Li J. Integrated bioinformatics analysis and network pharmacology to explore the potential mechanism of Patrinia heterophylla Bunge against acute promyelocytic leukemia. Medicine (Baltimore) 2023; 102:e35151. [PMID: 37800842 PMCID: PMC10553026 DOI: 10.1097/md.0000000000035151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/18/2023] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION Current treatment with arsenic trioxide and all-trans retinoic acid has greatly improved the therapeutic efficacy and prognosis of acute promyelocytic leukemia (APL), but may cause numerous adverse effects. Patrinia heterophylla Bunge (PHEB), commonly known as "Mu-Tou-Hui" in China, is effective in treating leukemia. However, no studies have reported the use of PHEB for APL treatment. In this study, we aimed to investigate the potential anticancer mechanism of PHEB against APL. METHODS Public databases were used to search for bioactive compounds in PHEB, their potential targets, differentially expressed genes associated with APL, and therapeutic targets for APL. The core targets and signaling pathways of PHEB against APL were identified by the protein-protein interaction network, Kaplan-Meier curves, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment, and compound-target-pathway network analysis. Molecular docking was performed to predict the binding activity between the most active compounds and the key targets. RESULTS Quercetin and 2 other active components of PHEB may exert anti-APL effects through proteoglycans in cancer, estrogen signaling, and acute myeloid leukemia pathways. We also identified 6 core targets of the bioactive compounds of PHEB, including protein tyrosine phosphatase receptor type C, proto-oncogene tyrosine-protein kinase Src, mitogen-activated protein kinase phosphatase 3 (MAPK3), matrix metalloproteinase-9, vascular endothelial growth factor receptor-2, and myeloperoxidase, most of which were validated to improve the 5-year survival of patients. Molecular docking results showed that the active compound bound well to key targets. CONCLUSION The results not only predict the active ingredients and potential molecular mechanisms of PHEB against APL, but also help to guide further investigation into the anti-APL application of PHEB.
Collapse
Affiliation(s)
- Liya Feng
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, Gansu, P. R. China
| | - Sha Zhu
- Gansu Province Medical Genetics Center, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu, P. R. China
| | - Jian Ma
- Key Lab of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Yali Hong
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, Gansu, P. R. China
| | - Meixia Wan
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, Gansu, P. R. China
| | - Qian Qiu
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, Gansu, P. R. China
| | - Hongjing Li
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, Gansu, P. R. China
| | - Juan Li
- Department of Basic Medical Sciences, College of Medicine, Longdong University, Qingyang, Gansu, P. R. China
| |
Collapse
|
8
|
Lang Z, Yu S, Hu Y, Tao Q, Zhang J, Wang H, Zheng L, Yu Z, Zheng J. Ginsenoside Rh2 promotes hepatic stellate cell ferroptosis and inactivation via regulation of IRF1-inhibited SLC7A11. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154950. [PMID: 37441987 DOI: 10.1016/j.phymed.2023.154950] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Sustained liver fibrosis may lead to cirrhosis. Activated hepatic stellate cells (HSCs) are crucial for liver fibrosis development. Ferroptosis, a newly iron-dependent regulated cell death, has been demonstrated to be involved in HSC inactivation. PURPOSE Ginsenoside Rh2 (GRh2), a natural bioactive product derived from ginseng, has been shown to promote HSC inactivation. However, the effect of GRh2 on HSC ferroptosis remains unclear. METHODS We explored the effects of GRh2 on liver fibrosis in vivo and in vitro. RNA-sequence analysis was performed in HSCs after GRh2 treatment. The crosstalk between ferroptotic HSCs and macrophages was also explored. RESULTS GRh2 alleviated liver fibrosis in vivo. In vitro, GRh2 reduced HSC proliferation and activation via ferroptosis, with increased intracellular iron, reactive oxygen species, malondialdehyde and glutathione depletion. The expression of SLC7A11, a negative regulator of ferroptosis, was obviously reduced by GRh2. Interestingly, interferon regulatory factor 1 (IRF1), a transcription factor, was predicted to bind the promoter region of SCL7A11. The interaction between IRF1 and SCL7A11 was further confirmed by the results of chromatin immunoprecipitation and luciferase reporter assays. Furthermore, loss of IRF1 led to an increase in SCL7A11, which contributed to the suppression of HSC ferroptosis and the enhancement of HSC activation in GRh2-treated HSCs. Further studies revealed that GRh2-induced HSC ferroptosis contributed to the inhibition of macrophage recruitment via regulation of inflammation-related genes. Moreover, GRh2 caused a reduction in liver inflammation in vivo. CONCLUSION Collectively, GRh2 up-regulates IRF1 expression, resulting in the suppression of SLC7A11, which contributes to HSC ferroptosis and inactivation. GRh2 ameliorates liver fibrosis through enhancing HSC ferroptosis and inhibiting liver inflammation. GRh2 may be a promising drug for treating liver fibrosis.
Collapse
Affiliation(s)
- Zhichao Lang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Suhui Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yuhang Hu
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qiqi Tao
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jingnan Zhang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Haoyue Wang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lei Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhixian Yu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Jianjian Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
9
|
Zhang X, Chen Y, Yang B, Shao X, Ying M. Driving the degradation of oncofusion proteins for targeted cancer therapy. Drug Discov Today 2023; 28:103584. [PMID: 37061213 DOI: 10.1016/j.drudis.2023.103584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/30/2022] [Accepted: 04/05/2023] [Indexed: 04/17/2023]
Abstract
Oncofusion proteins drive the development of about 16.5% of human cancers {AuQ: Edit OK?}, functioning as the unique pathogenic factor in some cancers. The targeting of oncofusion proteins is an attractive strategy to treat malignant tumors. Recently, triggering the degradation of oncofusion proteins has been shown to hold great promise as a therapeutic strategy. Here, we review the recent findings on the mechanisms that maintain the high stability of oncofusion proteins. Then, we summarize strategies to target the degradation of oncofusion proteins through the ubiquitin-proteasome pathway, the autophagy-lysosomal pathway, and the caspase-dependent pathway. By examining oncofusion protein degradation in cancer, we not only gain better insight into the carcinogenic mechanisms that involve oncofusion proteins, but also raise the possibility of treating oncofusion-driven cancer.
Collapse
Affiliation(s)
- Xingya Zhang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingqian Chen
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Xuejing Shao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Meidan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Pediatric Cancer Research Center, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
The ways for ginsenoside Rh2 to fight against cancer: the molecular evidences in vitro and in vivo. J Ginseng Res 2023; 47:173-182. [PMID: 36926617 PMCID: PMC10014223 DOI: 10.1016/j.jgr.2022.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/30/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is a global public health issue that becomes the second primary cause of death globally. Considering the side effects of radio- or chemo-therapy, natural phytochemicals are promising alternatives for therapeutic interventions to alleviate the side effects and complications. Ginsenoside Rh2 (GRh2) is the main phytochemical extracted from Panax ginseng C.A. Meyer with anticancer activity. GRh2 could induce apoptosis and autophagy of cancer cells and inhibit proliferation, metastasis, invasion, and angiogenesis in vitro and in vivo. In addition, GRh2 could be used as an adjuvant to chemotherapeutics to enhance the anticancer effect and reverse the adverse effects. Here we summarized the understanding of the molecular mechanisms underlying the anticancer effects of GRh2 and proposed future directions to promote the development and application of GRh2.
Collapse
|
11
|
Role of ginsenoside Rh2 in tumor therapy and tumor microenvironment immunomodulation. Biomed Pharmacother 2022; 156:113912. [DOI: 10.1016/j.biopha.2022.113912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
|
12
|
Abstract
As a steroid skeleton-based saponin, ginsenoside Rh2 (G-Rh2) is one of the major bioactive ginsenosides from the plants of genus Panax L. Many studies have reported the notable pharmacological activities of G-Rh2 such as anticancer, antiinflammatory, antiviral, antiallergic, antidiabetic, and anti-Alzheimer's activities. Numerous preclinical studies have demonstrated the great potential of G-Rh2 in the treatment of a wide range of carcinomatous diseases in vitro and in vivo. G-Rh2 is able to inhibit proliferation, induce apoptosis and cell cycle arrest, retard metastasis, promote differentiation, enhance chemotherapy and reverse multi-drug resistance against multiple tumor cells. The present review mainly summarizes the anticancer effects and related mechanisms of G-Rh2 in various models as well as the recent advances in G-Rh2 delivery systems and structural modification to ameliorate its anticancer activity and pharmacokinetics characteristics.
Collapse
|
13
|
Yao H, Mu X, Wei Z, Li X, Wu L, Jin Y, Li X, Li J, Jiang J. Facile approach for surfactant-free synthesis of Au@ginsenoside Rh2 nanoparticles and researches on anticancer activity. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00142-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Inorganic nanocomposites especially Au nanostructures have exhibited outstanding physicochemical properties in biomedical fields. For further clinical applications on theranostics, especially drug delivery, numerous explorations of green and facile synthesis methods combining with pharmacoactive natural components have been investigated to construct safe and multifunctional bioactive Au nanoparticles (NPs). Ginsenoside Rh2 is protopanaxadiol type compound isolated from plants of genus Panax, with excellent anticancer effect and antioxidant activity. In this research, we prepared the novel Au nanoparticles using ginsenoside Rh2 as both reducing and stabilizing agents.
Results
The synthesized Au@ginsenoside Rh2 NPs were proved to exhibit desirable inhibitory effect on different cancer cell lines, which benefited from the inherent anticancer effect of the ginsenoside Rh2. Investigations in vitro indicated that Au@ginsenoside Rh2 NPs inhibited cell proliferation, cell migration and invasion, induced cell cycle arrest, enhanced the reactive oxygen species (ROS) generation, and regulated the protein expressions of caspase-3, 8, 9 to trigger cell apoptosis as well.
Conclusions
Because of the absence of toxic chemical surfactants, the eco-friendly synthesis method of Au NPs modified by natural phytochemicals avoided tedious separation and modification processes. On the other hand, Au@ginsenoside Rh2 NPs also improved water solubility and bioavailability of the hydrophobic drug ginsenoside Rh2. It broadened minds for preparation and application of traditional Chinese medicines (TCMs) modified metal nanoparticles and deserved further study.
Collapse
|
14
|
Park JE, Ji HW, Kim HW, Baek M, Jung S, Kim SJ. Ginsenoside Rh2 Regulates the CFAP20DC-AS1/MicroRNA-3614-3p/BBX and TNFAIP3 Axis to Induce Apoptosis in Breast Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1703-1717. [PMID: 35787669 DOI: 10.1142/s0192415x22500720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
While a number of coding genes have explained the anticancer activity of ginsenoside Rh2, little is known about noncoding RNAs. This study was performed to elucidate the regulatory activity of long noncoding RNA (lncRNA) CFAP20DC-AS1, which is known to be downregulated by Rh2. MiR-3614-3p, which potentially binds CFAP20DC-AS1, was screened using the LncBase Predicted program, and the binding was verified by assaying the luciferase activity of a luciferase/lncRNA recombinant plasmid construct. The competitive endogenous RNA (ceRNA) relationship of the two RNAs was further validated by quantitative PCR after deregulation of each RNA using siRNA. The effect of miRNA and target genes on the MCF-7 cancer cell growth was determined by monitoring proliferation and apoptosis in the presence of Rh2 after deregulating the corresponding gene. The miRNA decreased the luciferase activity of the luciferase/CFAP20DC-AS1 fusion vector, confirming the binding. SiRNA-based deregulation of CFAP20DC-AS1 attenuated the expression of miR-3614-3p and vice versa. In contrast to CFAP20DC-AS1, miR-3614-3p was upregulated by Rh2, inhibiting proliferation but stimulating apoptosis of the MCF-7 cells. Target genes of miR-3614-3p, BBX and TNFAIP3, were downregulated by Rh2 and the miRNA but upregulated by the lncRNA. Rh2 inhibits CFAP20DC-AS1, which obscures the association of the lncRNA with miR-3614-3p, resulting in the suppression of oncogenic BBX and TNFAIP3. Taken together, the Rh2/CFAP20DC-AS1/miR-3614-3p/target gene axis contributes to the antiproliferation activity of Rh2 in cancer cells.
Collapse
Affiliation(s)
- Jae Eun Park
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hwee Won Ji
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyeon Woo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Minjae Baek
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sanghyun Jung
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
15
|
Transcriptome Analysis of the Anti-Proliferative Effects of Ginsenoside Rh3 on HCT116 Colorectal Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155002. [PMID: 35956952 PMCID: PMC9370307 DOI: 10.3390/molecules27155002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
The mechanism of ginsenoside Rh3 activity against cancer remains unclear. This study aimed to investigate the underlying mechanism. The effects of Rh3 on the cell proliferation, migration and invasion, and cycle and apoptosis were analyzed using CCK-8 assay, transwell migration assay and flow cytometry, respectively. The RNA transcriptome was sequenced and data were analyzed by R software. Protein expression and protein-protein interactions were determined by Western blotting and co-immunoprecipitation, respectively. The results showed Rh3 inhibited HCT116 cell proliferation, invasion, and migration, arrested cells at G1 phase; and increased apoptosis. Rh3 downregulated 314 genes and upregulated 371 genes. Gene Set Enrichment Analysis (GSEA) using The Kyoto Encyclopedia of Genes Genomics ranked DNA replication first, while GSEA using Gene Ontology ranked the initiation of DNA replication first. Compared with tumor data from The Cancer Genome Atlas (TCGA), most of genes related to DNA replication were oppositely regulated by Rh3. Furthermore, Rh3 down-regulated key protein expression related to DNA replication (Orc6, Cdt1, and Mcm2), but did not affect the loading of Mcm complexes onto ORC complexes nor the phosphorylation at ser139 of Mcm2. Therefore, Rh3 may inhibit colorectal cancer HCT116 cells by downregulation of genes related to DNA replication.
Collapse
|
16
|
Ghafouri-Fard S, Balaei N, Shoorei H, Hasan SMF, Hussen BM, Talebi SF, Taheri M, Ayatollahi SA. The effects of Ginsenosides on PI3K/AKT signaling pathway. Mol Biol Rep 2022; 49:6701-6716. [PMID: 35220526 PMCID: PMC9270311 DOI: 10.1007/s11033-022-07270-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 12/14/2022]
Abstract
Ginsenosides belong to a group of steroid glycosides that are extracted from the plant genus Panax (ginseng). This plant has been used for a long time for the treatment of a variety of disorders in traditional medicine. Recent studies have assessed the biological impact of Ginsenosides in cell culture or animal models. Animal studies have shown their beneficial impacts in the remedy of pathological conditions in different tissues. The ameliorating effects of Ginsenosides in diverse pathogenic conditions can be attributed to their effects on the production of reactive oxygen species. These substances mainly affect the activity of AMPK/AKT and PI3K/AKT pathways. The beneficial effects of Ginsenosides have been appraised in diabetes-related complications, spinal cord injury, cerebral ischemia, myocardial ischemia, and other disorders which are associated with oxidative stress. Moreover, these substances have been shown to interfere with the pathologic conditions during carcinogenesis. In the current study, we explain these impacts in two distinct sections including non-neoplastic conditions and neoplastic conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Balaei
- Department of Pharmacology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Syed Muhammad Farid Hasan
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi, Pakistan
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Seyedeh Fahimeh Talebi
- Department of Pharmacology, College of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | | |
Collapse
|
17
|
Wang Q, Ren Y, Cui Y, Gao B, Zhang H, Jiang Q, Loor JJ, Deng Z, Xu C. Bacillus subtilis Produces Amino Acids to Stimulate Protein Synthesis in Ruminal Tissue Explants via the Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Beta–Serine/Threonine Kinase–Mammalian Target of Rapamycin Complex 1 Pathway. Front Vet Sci 2022; 9:852321. [PMID: 35832333 PMCID: PMC9272757 DOI: 10.3389/fvets.2022.852321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
Background Bacillus subtilis is a probiotic strain that is widely used as a feed supplement for ruminants. In this study, one B. subtilis strain isolated from the ruminal fluid of Holstein dairy cows was used for an ex vivo study with ruminal tissue explants. The main goal was to assess the potential endosymbiotic links between B. subtilis and the ruminal epithelium using molecular analyses and amino acid profiling. The explant culture protocol was first optimized to determine the ideal conditions in terms of tissue viability before performing the actual experiments involving active and inactive bacteria with or without protein synthesis inhibitors, such as LY294002 (phosphatidylinositol 3-kinase inhibitor) or rapamycin [mammalian target of rapamycin (mTOR) inhibitor]. Results The mRNA levels of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta (PIK3CB), serine/threonine kinase (AKT), mTOR, P70S6K1, and eukaryotic translation initiation factor 4E binding protein 1 were the highest (p < 0.01), while those of programmed cell death 4 were the lowest when the tissue was incubated with 107 of B. subtilis. Compared with the inactivated bacteria, the expression levels of PIK3CB and AKT, and overall changes in mTOR and P70S6K1 were greater in rumen explants with living bacteria (p < 0.05). With an increase in B. subtilis concentration, the trends of protein and corresponding gene changes were consistent. There were differences in the concentrations of individual amino acids in the supernatants of living and inactivated bacterial culture groups, with most amino acids enriched in pathways, such as aminoacyl tRNA biosynthesis, cyanoamino acid metabolism, monobactam biosynthesis, or glycine, serine, and threonine metabolism. The addition of psilocybin upregulated the expression levels of PIK3CB and AKT. A significant decrease (p < 0.05) in PIK3CB and mTOR protein expression levels was detected after the addition of LY294002 and rapamycin. In addition, These responses were associated with the downregulation (p < 0.05) of AKT and P70S6K protein expression levels. Conclusions We confirmed that the in vivo ruminal tissue culture system is a suitable model for studying probiotic-induced alterations in tissue function. As such, this study provides a means for future mechanistic studies related to microbial regulation and the dietary supply of proteins. In addition, living and inactivated B. subtilis can promote protein synthesis in ruminal tissue explants by altering the expression levels of related factors in the PIK3CB–AKT–mTORC1 pathway, which could further aid in optimizing the feed efficiency and increasing the use of inactivated bacteria as additives in dairy cow farming.
Collapse
Affiliation(s)
- Qiuju Wang
- College of Animal Science and Veterinary, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yulong Ren
- College of Animal Science and Veterinary, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yizhe Cui
- College of Animal Science and Veterinary, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Bingnan Gao
- College of Animal Science and Veterinary, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hao Zhang
- College of Animal Science and Veterinary, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qianming Jiang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Juan J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Zhaoju Deng
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chuang Xu
- College of Animal Science and Veterinary, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Chuang Xu ;
| |
Collapse
|
18
|
Xue C, Li G, Lu J, Li L. Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression. Signal Transduct Target Ther 2021; 6:400. [PMID: 34815385 PMCID: PMC8611092 DOI: 10.1038/s41392-021-00788-w] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs), covalently closed noncoding RNAs, are widely expressed in eukaryotes and viruses. They can function by regulating target gene expression, linear RNA transcription and protein generation. The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays key roles in many biological and cellular processes, such as cell proliferation, growth, invasion, migration, and angiogenesis. It also plays a pivotal role in cancer progression. Emerging data suggest that the circRNA/PI3K/AKT axis modulates the expression of cancer-associated genes and thus regulates tumor progression. Aberrant regulation of the expression of circRNAs in the circRNA/PI3K/AKT axis is significantly associated with clinicopathological characteristics and plays an important role in the regulation of biological functions. In this review, we summarized the expression and biological functions of PI3K-AKT-related circRNAs in vitro and in vivo and assessed their associations with clinicopathological characteristics. We also further discussed the important role of circRNAs in the diagnosis, prognostication, and treatment of cancers.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|