1
|
Pasupuleti RR, Huang Y. Recent applications of atomic spectroscopy coupled with magnetic solid‐phase extraction techniques for heavy metal determination in environmental samples: A review. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Raghavendra Rao Pasupuleti
- Department of Medical Laboratory Science and Biotechnology Kaohsiung Medical University Kaohsiung Taiwan
| | - Yeou‐Lih Huang
- Department of Medical Laboratory Science and Biotechnology Kaohsiung Medical University Kaohsiung Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital Kaohsiung Medical University Kaohsiung Taiwan
- Graduate Institute of Medicine Kaohsiung Medical University Kaohsiung Taiwan
- Research Center for Precision Environmental Medicine Kaohsiung Medical University Kaohsiung Taiwan
- Department of Chemistry National Sun Yat‐sen University Kaohsiung Taiwan
| |
Collapse
|
2
|
Ozdemir S, Dündar A, Dizge N, Kılınç E, Balakrishnan D, Prasad KS, Senthilkumar N. Preconcentrations of Pb(II), Ni(II) and Zn(II) by solid phase bio-extractor using thermophilic Bacillus subtilis loaded multiwalled carbon nanotube biosorbent. CHEMOSPHERE 2023; 317:137840. [PMID: 36640976 DOI: 10.1016/j.chemosphere.2023.137840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/13/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
An alternative biotechnological solid phase bio-extraction (SPE) method was developed. Bacillus subtilis loaded multiwalled carbon nanotube was designed and used as biosorbent for the preconcentrations of Pb(II), Ni(II), and Zn(II). The experimental parameters such as sample flow rate, pH of sample solution, amounts of Bacillus subtilis and multiwalled carbon nanotube, volume of sample solution and reusability of column which affects the analytical characteristics of the SPE method were investigated in details. Surface structures were examined by using FTIR, SEM. The best pH was determined as 5.0 and the percentages recoveries of Zn(II), Ni(II), and Pb(II) were determined as 99.1%, 98.7%, and 96.2%, respectively, at a flow rate of 3 mL/min. In this study, in which the profitable sample volume was determined as 400 mL and the amount of multiwalled carbon nanotube (MWCNT) as 50 mg. It was also observed that the column had a significant potential to preconcentrate Zn(II), Ni(II), and Pb(II) even after 25 reuses. The biosorption capacities for Zn(II), Ni(II) and Pb(II) were calculated as 39.67 mg/g, 45.98 mg/g and 51.34 mg/g respectively. The LOD values were calculated as 0.024 ng/mL for Pb(II), 0.029 ng/mL for Ni(II), and 0.019 ng/mL for Zn(II). The linear range was detected as 0.25-25 ng/mL. The concentrations of Pb(II), Ni(II), and Zn(II) in a variety of real food samples were determined by using developed method after application of certified reference sample.
Collapse
Affiliation(s)
- Sadin Ozdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, 33343, Mersin, Turkey
| | - Abdurrahman Dündar
- Department of Medical Services and Techniques, Vocational School of Health Services, Mardin Artuklu University, 47420, Mardin, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, 33343, Mersin, Turkey
| | - Ersin Kılınç
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences, Dicle University, 21280, Diyarbakır, Turkey.
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Kashi Sai Prasad
- Department of Computer Science and Engineering, MLR Institute of Technology, Hyderabad, Telangana, 500043, India.
| | - Natarajan Senthilkumar
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| |
Collapse
|
3
|
Khan M, Ozalp O, Khan M, Soylak M. Fe3O4-Ti3AlC2 max phase impregnated with 2-(5-Bromo-2-pyridylazo-5-(diethylamino) phenol for magnetic solid phase extraction of Cadmium, lead and cobalt from water and food samples. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Badawy MEI, El-Nouby MAM, Kimani PK, Lim LW, Rabea EI. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. ANAL SCI 2022; 38:1457-1487. [PMID: 36198988 PMCID: PMC9659506 DOI: 10.1007/s44211-022-00190-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
Analytical processes involving sample preparation, separation, and quantifying analytes in complex mixtures are indispensable in modern-day analysis. Each step is crucial to enriching correct and informative results. Therefore, sample preparation is the critical factor that determines both the accuracy and the time consumption of a sample analysis process. Recently, several promising sample preparation approaches have been made available with environmentally friendly technologies with high performance. As a result of its many advantages, solid-phase extraction (SPE) is practiced in many different fields in addition to the traditional methods. The SPE is an alternative method to liquid-liquid extraction (LLE), which eliminates several disadvantages, including many organic solvents, a lengthy operation time and numerous steps, potential sources of error, and high costs. SPE advanced sorbent technology reorients with various functions depending on the structure of extraction sorbents, including reversed-phase, normal-phase, cation exchange, anion exchange, and mixed-mode. In addition, the commercial SPE systems are disposable. Still, with the continual developments, the restricted access materials (RAM) and molecular imprinted polymers (MIP) are fabricated to be active reusable extraction cartridges. This review will discuss all the theoretical and practical principles of the SPE techniques, focusing on packing materials, different forms, and performing factors in recent and future advances. The information about novel methodological and instrumental solutions in relation to different variants of SPE techniques, solid-phase microextraction (SPME), in-tube solid-phase microextraction (IT-SPME), and magnetic solid-phase extraction (MSPE) is presented. The integration of SPE with analytical chromatographic techniques such as LC and GC is also indicated. Furthermore, the applications of these techniques are discussed in detail along with their advantages in analyzing pharmaceuticals, biological samples, natural compounds, pesticides, and environmental pollutants, as well as foods and beverages.
Collapse
Affiliation(s)
- Mohamed E I Badawy
- Department of Pesticide Chemistry and Technology, Laboratory of Pesticide Residues Analysis, Faculty of Agriculture, Alexandria University, Aflatoun St., 21545-El-Shatby, Alexandria, Egypt.
| | - Mahmoud A M El-Nouby
- Department of Pesticide Chemistry and Technology, Laboratory of Pesticide Residues Analysis, Faculty of Agriculture, Alexandria University, Aflatoun St., 21545-El-Shatby, Alexandria, Egypt
- Department of Engineering, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Paul K Kimani
- Department of Engineering, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Lee W Lim
- International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Entsar I Rabea
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt
| |
Collapse
|
5
|
Synthesis and Analysis of Impregnation on Activated Carbon in Multiwalled Carbon Nanotube for Cu Adsorption from Wastewater. Bioinorg Chem Appl 2022; 2022:7470263. [PMID: 35959227 PMCID: PMC9357786 DOI: 10.1155/2022/7470263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022] Open
Abstract
Industrial wastes contain more toxins that get dissolved in the rivers and lakes, which are means of freshwater reservoirs. The contamination of freshwater leads to various issues for microorganisms and humans. This paper proposes a novel method to remove excess copper from the water. The nanotubes are used as a powder in membrane form to remove the copper from the water. The multiwalled carbon nanotube is widely used as a membrane for filtration. It contains many graphene layers of nm size that easily adsorbs the copper when the water permeates through it. Activated carbon is the earliest and most economical method that also adsorbs copper to a certain extent. This paper proposes the methods of involving the activated carbon in the multiwalled carbon nanotube to improve the adsorption capability of the copper. Here, activated carbon is impregnated on the multiwalled carbon nanotube's defect and imperfect surface areas. It makes more adsorption sites on the surface, increasing the adsorption amount. The same method is applied to Hydroxyl functionalized multiwalled carbon nanotubes. Both the methods showed better results and increased the copper removal. The functionalized method removed 93.82% copper, whereas the nonfunctionalized method removed 80.62% copper from the water.
Collapse
|
6
|
A simulation study of an electro-membrane extraction for enhancement of the ion transport via tailoring the electrostatic properties. Sci Rep 2022; 12:12170. [PMID: 35842540 PMCID: PMC9288467 DOI: 10.1038/s41598-022-16482-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/11/2022] [Indexed: 01/09/2023] Open
Abstract
Membrane technology with advantages such as reduced energy consumption due to no phase change, low volume and high mass transfer, high separation efficiency for solution solutions, straightforward design of membranes, and ease of use on industrial scales are different from other separation methods. There are various methods such as liquid-liquid extraction, adsorption, precipitation, and membrane processes to separate contaminants from an aqueous solution. The liquid membrane technique provides a practical and straightforward separation method for metal ions as an advanced solvent extraction technique. Stabilized liquid membranes require less solvent consumption, lower cost, and more effortless mass transfer due to their thinner thickness than other liquid membrane techniques. The influence of the electrostatic properties, derived from the electrical field, on the ionic transport rate and extraction recovery, in flat sheet supported liquid membrane (FSLM) and electro flat sheet supported liquid membrane (EFSLM) were numerically investigated. Both FSLM and EFSLM modes of operation, in terms of implementing electrostatic, were considered. Through adopting a numerical approach, Poisson-Nernst-Planck, and Navier-Stokes equations were solved at unsteady-state conditions by considering different values of permittivity, diffusivity, and viscosity for the presence of electrical force and stirrer, respectively. The most important result of this study is that under similar conditions, by increasing the applied voltage, the extraction recovery increased. For instance, at EFSLM mode, by increasing the applied voltage from [Formula: see text] to [Formula: see text], the extraction recovery increased from [Formula: see text] to [Formula: see text]. Furthermore, it was also observed that the presence of nanoparticles has significant effects on the performance of the SLM system.
Collapse
|
7
|
Kilinc E, Ozdemir S, Poli A, Niolaus B, Romano I, Bekmezci M, Sen F. A novel bio-solid phase extractor for preconcentrations of Hg and Sn in food samples. ENVIRONMENTAL RESEARCH 2022; 207:112231. [PMID: 34695434 DOI: 10.1016/j.envres.2021.112231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
An ecofriendly preconcentration method was developed based on the use of Geobacillus galactosidasius sp. nov immobilized on Amberlite XAD-4 as an adsorbent for the preconcentrations of Hg and Sn. SEM-EDX performed for the investigation of surface functionality and morphology. The detailed investigations of factors such as pH of the solution, flow rate, interfering ions and sample volume have been thanks to the optimization of the pre-concentration system. The optimum pHs were found as 5.0-7.0 for Hg and Sn and also the optimum flow rates were determined as 2 mL min-1 for recovery of Hg and Sn. Under the best experimental conditions, limits of detections (LOD) were found as 0.53 ng mL-1 for Hg and 0.27 ng mL-1 for Sn. RSDs were calculated as 8.2% for Hg and 6.9% for Sn. The process was validated to use certified references (fish samples). ICP-OES was used to measure the levels of Hg and Sn in various real meal patterns after the devised technique was used. Concentrations of Hg and Sn were quantitively measured on gluten-free biscuit, flour, rice, Tuna fish, meat, chicken meat, potato, chocolate, coffee, tap water, energy drink and mineral water samples with low RSD. The developed method emerges as an innovative technology that will eliminate the low cost and toxic effect.
Collapse
Affiliation(s)
- Ersin Kilinc
- Department of Chemical and Chemical Processing Technologies, Vocational School of Technical Sciences, Dicle University, 21280, Diyarbakir, Turkey.
| | - Sadin Ozdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, TR-33343, Yenisehir, Mersin, Turkey.
| | - Annarita Poli
- National Research Council of Italy (C.N.R.), Institute of Biomolecular Chemistry, via Campi Flegrei, n. 34, 80078, Pozzuoli, Napoli, Italy
| | - Barbara Niolaus
- National Research Council of Italy (C.N.R.), Institute of Biomolecular Chemistry, via Campi Flegrei, n. 34, 80078, Pozzuoli, Napoli, Italy
| | - Ida Romano
- National Research Council of Italy (C.N.R.), Institute of Biomolecular Chemistry, via Campi Flegrei, n. 34, 80078, Pozzuoli, Napoli, Italy
| | - Muhammed Bekmezci
- Sen Research Group, Department of Biochemistry, Faculty of Art and Science, Dumlupinar University, 43100, Turkey; Department of Materials Science & Engineering, Faculty of Engineering, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Faculty of Art and Science, Dumlupinar University, 43100, Turkey.
| |
Collapse
|
8
|
Soylak M, Sevicin AO, Uzcan F. Preconcentration of Nickel by Magnetic Solid-Phase Extraction (MSPE) as the 2-(5-Bromo-2-Pyridylazo)-5-Diethylamino-Phenol (PADAP) Chelate upon Multiwalled Carbon Nanotubes (MWCNTs) with Determination by Flame Atomic Absorption Spectrometry (FAAS). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2046770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research and Application Center (ERU-TAUM), Erciyes University, Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey
| | - Ali Osman Sevicin
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research and Application Center (ERU-TAUM), Erciyes University, Kayseri, Turkey
| | - Furkan Uzcan
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research and Application Center (ERU-TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
9
|
Oilothermal, a novel pyrolysis method for fabrication of carbon dots-loaded carriers from cyanobacteria for use in solid-phase extraction of cadmium. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Kulkarni BB, Suvina V, Balakrishna RG, Nagaraju DH, Jagadish K. 1D GNR‐PPy Composite for Remarkably Sensitive Detection of Heavy Metal Ions in Environmental Water**. ChemElectroChem 2022. [DOI: 10.1002/celc.202101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bhakti B. Kulkarni
- Centre for Nano and Material Sciences Jain University Jain Global Campus, Kanakapura Bangalore 562112, Karnataka India
| | - V. Suvina
- Centre for Nano and Material Sciences Jain University Jain Global Campus, Kanakapura Bangalore 562112, Karnataka India
| | - R. Geetha Balakrishna
- Centre for Nano and Material Sciences Jain University Jain Global Campus, Kanakapura Bangalore 562112, Karnataka India
| | - D. H. Nagaraju
- Centre for Nano and Material Sciences Jain University Jain Global Campus, Kanakapura Bangalore 562112, Karnataka India
| | - Kusuma Jagadish
- Centre for Nano and Material Sciences Jain University Jain Global Campus, Kanakapura Bangalore 562112, Karnataka India
| |
Collapse
|
11
|
Titanium Dioxide Nanotubes as Solid-Phase Extraction Adsorbent for the Determination of Copper in Natural Water Samples. MATERIALS 2022; 15:ma15030822. [PMID: 35160765 PMCID: PMC8836478 DOI: 10.3390/ma15030822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/28/2022]
Abstract
To increase the sensitivity of the analysis method of good copper sample preparation is essential. In this context, an analytical method was developed for sensitive determination of Cu (II) in environmental water samples by using TiO2 nanotubes as a solid-phase extraction absorbent (SPE). Factors affecting the extraction efficiency including the type, volume, concentration, and flow rate of the elution solvent, the mass of the adsorbent, and the volume, pH, and flow rate of the sample were evaluated and optimized. TiO2 nanotubes exhibited their good enrichment capacity for Cu (II) (~98%). Under optimal conditions, the method of the analysis showed good linearity in the range of 0–22 mg L−1 (R2 > 0.99), satisfactory repeatability (relative standard deviation: RSD was 3.16, n = 5), and a detection limit of about 32.5 ng mL−1. The proposed method was applied to real water samples, and the achieved recoveries were above 95%, showing minimal matrix effect and the robustness of the optimized SPE method.
Collapse
|
12
|
Talesh Ramezani A, Rabiei R, Badiei A, Mohammadi Ziarani G, Ghasemi JB. A new fluorescence probe for detection of Cu +2 in blood samples: Circuit logic gate. Anal Biochem 2021; 639:114525. [PMID: 34929153 DOI: 10.1016/j.ab.2021.114525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/01/2022]
Abstract
A Fluorescence probe was designed based on 8-hydroxyquinoline chitosan silica precursor (HQCS) for selective detection of Al3+, Cu2+. The HQCS has no observable fluorescence signal, but after the addition of Al3+, a huge fluorescence signal appeared, and the selective quenching was absorbed after the addition of Cu2+. The effect of other different cations, including Cu2+, Mg2+, Ca2+, Pb2+, Zn2+, Hg2+, Ag+, Fe3+, and K+ was studied. The addition of Cu2+ to the probe (HQCSAL) decreased the fluorescence very repeatable, and the variation of the fluorescence vs. Cu2+ was monotonic and linear. Therefore, the prepared probe was used to determine Cu2+ ions in real samples. The mechanism of fluorescence variation by adding cations to the probe solution was studied using the Stern-Volmer equation. Under the optimum conditions, the linear range and detection limit were 3.5-31 μM and 1 μM, respectively. The probe accuracy on the copper determination in the blood and tap waters was comparable to the ICP-OES results. The circuit logic gate mimic was designed for the fluorescence behavior of the probe constituents.
Collapse
Affiliation(s)
| | - Razieh Rabiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | - Jahan B Ghasemi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
13
|
Use of Electrocoagulation for Treatment of Pharmaceutical Compounds in Water/Wastewater: A Review Exploring Opportunities and Challenges. WATER 2021. [DOI: 10.3390/w13152105] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Increasing dependency on pharmaceutical compounds including antibiotics, analgesics, antidepressants, and other drugs has threatened the environment as well as human health. Their occurrence, transformation, and fate in the environment are causing significant concerns. Several existing treatment technologies are there with their pros and cons for the treatment of pharmaceutical wastewater (PWW). Still, electrocoagulation is considered as the modern and decisive technology for treatment. In the EC process, utilizing electricity (AC/DC) and electrodes, contaminants become coagulated with the metal hydroxide and are separated by co-precipitation. The main mechanism is charge neutralization and adsorption of contaminants on the generated flocs. The range of parameters affects the EC process and is directly related to the removal efficiency and its overall operational cost. This process only could be scaled up on the industrial level if process parameters become optimized and energy consumption is reduced. Unfortunately, the removal mechanism of particular pharmaceuticals and complex physiochemical phenomena involved in this process are not fully understood. For this reason, further research and reviews are required to fill the knowledge gap. This review discusses the use of EC for removing pharmaceuticals and focuses on removal mechanism and process parameters, the cost assessment, and the challenges involved in mitigation.
Collapse
|
14
|
Chaikhan P, Udnan Y, Ampiah-Bonney RJ, Chuachuad Chaiyasith W. Magnetic Dispersive Solid Phase Extraction Using Recycled-graphite for GO-Fe 3O 4-dithizone Composite Combined with FAAS for Determination of Lead in Environmental Samples. ANAL SCI 2021; 37:1015-1021. [PMID: 33455961 DOI: 10.2116/analsci.20p383] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Magnetic dispersive solid phase extraction (MdSPE) was developed to determine the concentration of lead (Pb) in real water samples, while graphene oxide-magnetite-dithizone (GO-Fe3O4-DTZ) from the used graphite tubes (recycled graphite) of electrothermal technique was simply employed as a new sorbent to improve extraction efficiency, separated by external magnetic field and analyzed with FAAS. The synthesized sorbent was evaluated for its surface property, functional group and surface morphology by Zeta potential, Fourier transform infrared spectrophotometer (FTIR), and scanning electron microscope (SEM), respectively. The relevant measurement parameters, such as pH, extraction time, type and concentration of eluent, sample volume and reusability, were optimized. Under the optimal conditions, preconcentration factor was 13.33. The limit of detection (LOD) and limit of quantitation (LOQ) obtained were 0.070 and 0.23 mg/L, respectively. The relative standard deviation (%RSD) was 3.41%. Recovery values were 90.1 - 123%. In addition, the robustness of the method was affirmed in terms of tolerance limit obtained from interference studies.
Collapse
Affiliation(s)
| | - Yuthapong Udnan
- Department of Chemistry, Faculty of Science, Naresuan University
| | | | - Wipharat Chuachuad Chaiyasith
- Department of Chemistry, Faculty of Science, Naresuan University.,Center of Excellence in Petroleum, Petrochemicals and Advanced Materials, Faculty of Science, Naresuan University
| |
Collapse
|
15
|
Zhu F, Li L, Li N, Liu W, Liu X, He S. Selective solid phase extraction and preconcentration of Cd(II) in the solution using microwave-assisted inverse emulsion-suspension Cd(II) ion imprinted polymer. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Singla M, Sit N. Application of ultrasound in combination with other technologies in food processing: A review. ULTRASONICS SONOCHEMISTRY 2021; 73:105506. [PMID: 33714087 PMCID: PMC7960546 DOI: 10.1016/j.ultsonch.2021.105506] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/26/2021] [Accepted: 02/25/2021] [Indexed: 05/06/2023]
Abstract
The use of non-thermal processing technologies has been on the surge due to ever increasing demand for highest quality convenient foods containing the natural taste & flavor and being free of chemical additives and preservatives. Among the various non-thermal processing methods, ultrasound technology has proven to be very valuable. Ultrasound processing, being used alone or in combination with other processing methods, yields significant positive results on the quality of foods, thus has been considered efficacious. Food processes performed under the action of ultrasound are believed to be affected in part by cavitation phenomenon and mass transfer enhancement. It is considered to be an emerging and promising technology and has been applied efficiently in food processing industry for several processes such as freezing, filtration, drying, separation, emulsion, sterilization, and extraction. Various researches have opined that ultrasound leads to an increase in the performance of the process and improves the quality factors of the food. The present paper will discuss the mechanical, chemical and biochemical effects produced by the propagation of high intensity ultrasonic waves through the medium. This review outlines the current knowledge about application of ultrasound in food technology including processing, preservation and extraction. In addition, the several advantages of ultrasound processing, which when combined with other different technologies (such as microwave, supercritical CO2, high pressure processing, enzymatic extraction, etc.) are being examined. These include an array of effects such as effective mixing, retention of food characteristics, faster energy and mass transfer, reduced thermal and concentration gradients, effective extraction, increased production, and efficient alternative to conventional techniques. Furthermore, the paper presents the necessary theoretical background and details of the technology, technique, and safety precautions about ultrasound.
Collapse
Affiliation(s)
- Mohit Singla
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
17
|
KamaŞ D, Karatepe A, Soylak M. Vortex-assisted magnetic solid phase extraction of Pb and Cu in some herb samples on magnetic multiwalled carbon nanotubes. Turk J Chem 2021; 45:210-218. [PMID: 33679164 PMCID: PMC7925297 DOI: 10.3906/kim-2009-26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/26/2020] [Indexed: 11/03/2022] Open
Abstract
This study is the development of a new solid phase extraction method based on using magnetic multiwalled carbon nanotubes impregnated with 1-(2-pyridylazo)2-naphthol (PAN) for separation, preconcentration, and flame atomic absorption spectrometric determination of Pb(II) and Cu(II). Optimization of the method was done by investigating pH effect, amount of magnetic multiwalled carbon nanotubes impregnated with PAN, eluent type and volume, matrix effects, and volume of the sample. The optimum adsorbent amount was found to be 75 mg and the optimum pH value was found as 5.5. The detection limits were 16.6 μg L-1 for Pb(II) and 18.9 μg L-1 for Cu(II). The relative standard deviations (RSD%) were less than 4%. Two certified reference materials: SPS-WW2 wastewater and NCS-DC73349 (bush branches and leaves) were used to test the validation of the method. The method was successfully applied to the analysis of Pb(II) and Cu(II) ions in daisy, mint, paprika, sage, rosemary, daphne leaves, heather, green tea, andViburnum opulussamples.
Collapse
Affiliation(s)
- Dilek KamaŞ
- Department of Chemistry, Faculty of Arts and Science, Nevşehir Hacı Bektaş Veli University, Nevşehir Turkey
| | - Aslıhan Karatepe
- Department of Chemistry, Faculty of Arts and Science, Nevşehir Hacı Bektaş Veli University, Nevşehir Turkey
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri Turkey
| |
Collapse
|
18
|
Jagirani MS, Ozalp O, Soylak M. New Trend in the Extraction of Pesticides from the Environmental and Food Samples Applying Microextraction Based Green Chemistry Scenario: A Review. Crit Rev Anal Chem 2021; 52:1343-1369. [PMID: 33560139 DOI: 10.1080/10408347.2021.1874867] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focused on the green microextraction methods used for the extraction of pesticides from the environmental and food samples. Microextraction techniques have been explored and applied in various fields of analytical chemistry since its beginning, as evinced by the numerous reviews published. The success of any technique in science and technology is measured by the simplicity, environmentally friendly, and its applications; and the microextraction technique is highly successive. Deliberations were attentive to studies where efforts have been made to validate the methods through the inter-laboratory comparison study to assess the analytical performance of microextraction techniques against conventional methods. Succinctly, developed microextraction methods are shown to impart significant benefits over conventional techniques. Provided that the analytical community continues to put forward attention and resources into the growth and validation of the microextraction technique, a promising future for microextraction is forecasted.
Collapse
Affiliation(s)
- Muhammad Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Ozgur Ozalp
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
19
|
Jagirani MS, Soylak M. A review: Recent advances in solid phase microextraction of toxic pollutants using nanotechnology scenario. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105436] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Laza A, Orozco E, Baldo MF, Raba J, Aranda PR. Determination of arsenic (V) in cannabis oil by adsorption on multiwall carbon nanotubes thin film using XRF technique. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Moallaei H, Bouchara JP, Rad A, Singh P, Raizada P, Tran HN, Zafar MN, Giannakoudakis DA, Hosseini-Bandegharaei A. Application of Fusarium sp. immobilized on multi-walled carbon nanotubes for solid-phase extraction and trace analysis of heavy metal cations. Food Chem 2020; 322:126757. [DOI: 10.1016/j.foodchem.2020.126757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 11/11/2019] [Accepted: 04/05/2020] [Indexed: 11/15/2022]
|
22
|
Karbalaie B, Rajabi M, Fahimirad B. Dopamine-modified magnetic graphene oxide as a recoverable sorbent for the preconcentration of metal ions by an effervescence-assisted dispersive micro solid-phase extraction procedure. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2338-2346. [PMID: 32930259 DOI: 10.1039/d0ay00522c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanomagnetic graphene oxide modified with dopamine (GO-Fe3O4-DA) was synthesized via a very simple procedure. Using GO-Fe3O4-DA as the new adsorbent, the effervescence-assisted dispersive micro solid-phase extraction procedure was exploited for the preconcentrative extraction of Cu(ii), Pb(ii) and Ni(ii) ions. Structural characteristics of the adsorbent were studied via FT-IR, FE-SEM, EDX and XRD analyses. The rapid dispersion and high adsorption capability of GO-Fe3O4-DA, along with the rapid separation of the adsorbent from the aqueous phase by a magnet, led to a decrease in the extraction time of the target metal ions. In effect, high extraction percentages were attained in a very short time period. In this work, the relative standard deviations (RSD; n = 3) calculated for the proposed method were 1.09, 1.25 and 1.03% for the Pb(ii), Cu(ii) and Ni(ii) ions, respectively, the calibration curve was dynamically linear in the range of 0.25 to 50 μg L-1, and the limits of detection were obtained as 0.5, 0.1, and 0.7 μg L-1. The procedure was also implemented on real sausage (herbal and meaty) samples and a water sample, vouchsafing the success of the proposed method in tackling real samples with a complicated matrix.
Collapse
Affiliation(s)
- Basira Karbalaie
- Department of Chemistry, Semnan University, Semnan 35195-363, Iran.
| | - Maryam Rajabi
- Department of Chemistry, Semnan University, Semnan 35195-363, Iran.
| | | |
Collapse
|
23
|
A magnetic adsorbent based on salicylic acid-immobilized magnetite nano-particles for pre-concentration of Cd(II) ions. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1930-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Ghiasi A, Malekpour A. Octyl coated cobalt-ferrite/silica core-shell nanoparticles for ultrasonic assisted-magnetic solid-phase extraction and speciation of trace amount of chromium in water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104530] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Li J, Xiao Z, Wang W, Zhang S, Wu Q, Wang C, Wang Z. Rational integration of porous organic polymer and multiwall carbon nanotube for the microextraction of polycyclic aromatic hydrocarbons. Mikrochim Acta 2020; 187:284. [PMID: 32323029 DOI: 10.1007/s00604-020-04261-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
By integration of benzene-constructed porous organic polymer (KBF) and multiwalled carbon nanotube (MWCNT), a MWCNT-KBF hybrid material was constructed through in situ knitting benzene with formaldehyde dimethyl acetal in the presence of MWCNTs to form a network. MWCNT-KBF was then adopted as a novel solid-phase microextraction (SPME) fiber coating. Coupled to gas chromatography-flame ionization detection, the MWCNT-KBF-assisted SPME method showed large enhancement factors (483-2066), low limits of detection (0.04-0.12 μg L-1), good linearity (0.13-50 μg L-1), and acceptable reproducibility (4.2-10.2%) for the determination of polycyclic aromatic hydrocarbons (PAHs). The method recoveries of seven PAHs were in the range 80.1-116.3%, with relative standard deviations (RSDs) ranging from 3.5 to 11.9%. The SPME method was successfully applied to the determination of PAHs in river, pond, rain, and waste water, providing a good alternative for monitoring trace level of PAHs in environmental water. Graphical abstract Schematic representation of the rational integration of porous organic polymer (KBF) and multiwalled carbon nanotube (MWCNT) to form a MWCNT-KBF hybrid material through in situ knitting benzene with formaldehyde dimethyl acetal at the presence of MWCNT.
Collapse
Affiliation(s)
- Jinqiu Li
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Zhichang Xiao
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Wenjin Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Shuaihua Zhang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| |
Collapse
|
26
|
Kanao E, Kubo T, Otsuka K. Carbon-Based Nanomaterials for Separation Media. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Eisuke Kanao
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takuya Kubo
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Koji Otsuka
- Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
27
|
Sagrario García-Martín, Barciela-García J, Herrero-Latorre C, Peña-Crecente RM. Determination of Metals in Grape Marc Spirits by Magnetic Solid-Phase Extraction Combined With Capillary Electrophoresis. Comparison of Multi-Walled Carbon Nanotubes and Silica Nanoparticles. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Mehrani Z, Karimpour Z, Ebrahimzadeh H. Using PVA/CA/Au NPs electrospun nanofibers as a green nanosorbent to preconcentrate and determine Pb2+and Cu2+in rice samples, water sources and cosmetics. NEW J CHEM 2020. [DOI: 10.1039/d0nj03352a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polyvinyl alcohol (PVA)/citric acid (CA)/Au NPs electrospun nanofibers was synthesized and applied as a green and efficient sorbent to extract and preconcentrate Pb2+and Cu2+from water sources, rice samples and cosmetics before FAAS.
Collapse
Affiliation(s)
- Zahra Mehrani
- Faculty of Chemistry and Petroleum Sciences
- Shahid Beheshti University
- Tehran
- Iran
| | - Zahra Karimpour
- Faculty of Chemistry and Petroleum Sciences
- Shahid Beheshti University
- Tehran
- Iran
| | | |
Collapse
|
29
|
Imidazolium-dysprosium-based magnetic NanoGUMBOS for isolation of hemoglobin. Talanta 2019; 205:120078. [DOI: 10.1016/j.talanta.2019.06.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 02/02/2023]
|
30
|
A simple, rapid and sensitive method based on modified multiwalled carbon nanotube for preconcentration and determination of lead ions in aqueous media in natural pHs. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Investigation of the CO2 absorption in pure water and MDEA aqueous solution including amine functionalized multi-wall carbon nano tubes. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
32
|
Tavallali H, Malekzadeh H, Karimi MA, Payehghadr M, Deilamy-Rad G, Tabandeh M. Chemically modified multiwalled carbon nanotubes as efficient and selective sorbent for separation and preconcentration of trace amount of Co(II), Cd(II), Pb(II), and Pd(II). ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
33
|
Hamid Shirkhanloo, Kheirolnesa Merchant, Mostafa Dehghani Mobarake. Ultrasound-assisted Solid-liquid Trap Phase Extraction based on Functionalized Multi Wall Carbon Nanotubes for Preconcentration and Separation of Nickel in Petrochemical Waste Water. JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1134/s1061934819090090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Development of tetraethylene pentamine functionalized multi-wall carbon nanotubes as a new adsorbent in a syringe system for removal of bisphenol A by using multivariate optimization techniques. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Alberti G, Emma G, Colleoni R, Nurchi VM, Pesavento M, Biesuz R. Simple solid-phase spectrophotometric method for free iron(III) determination. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
36
|
Akbar M, Manoochehri M. An efficient 2-mercapto-5-phenylamino-1,3,4-thiadiazole functionalized magnetic graphene oxide nanocomposite for preconcentrative determination of mercury in water and seafood samples. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Alawadi M, Eftekhari M, Gheibi M, Iranzad F, Chamsaz M. Synthesis of silver nanoparticles by pistachio skin extract and its application for solid phase extraction of Bi(III) followed by electrothermal atomic absorption spectrometry. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00765-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Esmaeilzadeh M. RETRACTED: Synthesis and application of MIL-101(Fe)/1,5-diphenylcarbazide functionalized magnetite nanoparticles composite for trace determination of cadmium in fish and canned tuna. Microchem J 2019. [DOI: 10.1016/j.microc.2018.10.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Zhu L, Tong L, Zhao N, Li J, Lv Y. Coupling interaction between porous biochar and nano zero valent iron/nano α-hydroxyl iron oxide improves the remediation efficiency of cadmium in aqueous solution. CHEMOSPHERE 2019; 219:493-503. [PMID: 30551116 DOI: 10.1016/j.chemosphere.2018.12.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/28/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Based on the interaction between mesoscopic biochar materials and nanomaterials, the synergistic mechanism of the two materials in the process of cadmium remediation was studied. K2CO3 activated porous biochar (KBC) loaded with nano-zero-valent iron (nZVI)/nano-α-hydroxy-iron oxide (nHIO) was studied. Macroscopically, batch adsorption experiments were carried out to describe the adsorption properties of the composites. Microscopically, the changes of surface chemical states were characterized by electron microscopy, XRD, FTIR and XPS. Combining the macroscopic and microscopic characteristics, the synergistic mechanism between biochar and nZVI/nHIO was comprehensively analyzed. The strong synergistic effects between biochar and nano-zero-valent iron (nZVI)/nano-α-hydroxy-iron oxide (nHIO) were found, which improved the removal efficiency of cadmium (Cd) in aqueous solution. The results showed that the loading of nZVI/nHIO reduced the specific surface area to 178.6 m2 g-1 and 272.2 m2 g-1, respectively, but the adsorption capacity of Cd increased to 22.37 mg g-1 and 26.43 mg g-1, respectively, which was more than three times that of KBC (7.02 mg g-1). The interaction between nZVI/nHIO and Cd was enhanced by the complexation of surface functional groups, but the coupling effects were different. The coupling mechanism of Cd on nZVI@KBC was complexation - reduction. Cd was partly reduced in the removal process. While for nHIO@KBC, the existence of Fe (III) on the surface of biochar increased the number and species of oxygen-containing functional groups and enhanced complexation. The existence of synergistic mechanism will provide theoretical basis for the preparation of high efficient nanocomposites and expand the application of nanomaterials in the field of environment.
Collapse
Affiliation(s)
- Ling Zhu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lihong Tong
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Nan Zhao
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yizhong Lv
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
40
|
Bolisetty S, Peydayesh M, Mezzenga R. Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev 2019; 48:463-487. [DOI: 10.1039/c8cs00493e] [Citation(s) in RCA: 651] [Impact Index Per Article: 130.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We review and analyze current water purification technologies in the context of sustainability, and we introduce the Ranking Efficiency Product (REP) index, to evaluate their efficiency and implementation in this broader perspective.
Collapse
Affiliation(s)
- Sreenath Bolisetty
- Department of Health Science & Technology
- ETH Zürich
- 8092 Zürich
- Switzerland
| | - Mohammad Peydayesh
- Department of Health Science & Technology
- ETH Zürich
- 8092 Zürich
- Switzerland
| | - Raffaele Mezzenga
- Department of Health Science & Technology
- ETH Zürich
- 8092 Zürich
- Switzerland
- Department of Materials
| |
Collapse
|
41
|
Noorimotlagh Z, Mirzaee SA, Martinez SS, Alavi S, Ahmadi M, Jaafarzadeh N. Adsorption of textile dye in activated carbons prepared from DVD and CD wastes modified with multi-wall carbon nanotubes: Equilibrium isotherms, kinetics and thermodynamic study. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2018.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Alipanahpour Dil E, Asfaram A, Sadeghfar F. Magnetic dispersive micro-solid phase extraction with the CuO/ZnO@Fe3O4-CNTs nanocomposite sorbent for the rapid pre-concentration of chlorogenic acid in the medical extract of plants, food, and water samples. Analyst 2019; 144:2684-2695. [DOI: 10.1039/c8an02484g] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CuO/ZnO@Fe3O4-CNTs-NC was synthesized and used as a sorbent in a MDMSPE method for the determination of chlorogenic acid in the medical extract of plants, food, and water samples.
Collapse
Affiliation(s)
| | - Arash Asfaram
- Medicinal Plants Research Center
- Yasuj University of Medical Sciences
- Yasuj
- Iran
| | | |
Collapse
|
43
|
Yamini Y, Safari M. Modified magnetic nanoparticles with catechol as a selective sorbent for magnetic solid phase extraction of ultra-trace amounts of heavy metals in water and fruit samples followed by flow injection ICP-OES. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Majeed HJ, Eftekhari M, Gheibi M, Chamsaz M. Synthesis and application of cerium oxide nanoparticles for preconcentration of trace levels of copper in water and foods followed by flame atomic absorption spectrometry. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9949-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
45
|
Graphene-based materials as solid phase extraction sorbent for chromium(VI) determination in red wine. Microchem J 2018. [DOI: 10.1016/j.microc.2018.05.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Seo Y, Hwang J, Lee E, Kim YJ, Lee K, Park C, Choi Y, Jeon H, Choi J. Engineering copper nanoparticles synthesized on the surface of carbon nanotubes for anti-microbial and anti-biofilm applications. NANOSCALE 2018; 10:15529-15544. [PMID: 29985503 DOI: 10.1039/c8nr02768d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biofilms adhere to surfaces to produce extracellular polymeric substances (EPSs). EPSs grow and protect themselves from external stresses. Their formation causes a foul odor and may lead to chronic infectious diseases in animals and people. Biofilms also inhibit the contact between bacteria and antibiotics, thereby reducing their antibacterial activity. Thus, we describe novel nanostructures, a fusion of copper and multi-walled carbon nanotubes (MWCNTs), which increase antimicrobial activity against biofilms without being toxic to human cells. Simulations based on the stochastic response were performed to predict the efficiency of synthesizing nanostructures. The synthesized Cu/MWCNTs inhibit the growth of Methylobacterium spp., which forms biofilms; antimicrobial testing and cytotoxicity assessments showed that the Cu/MWCNTs were not cytotoxic to human cells. The Cu/MWCNTs come in direct contact with the bacterial cell surface, damage the cell wall, and cause secondary oxidation of reactive oxygen species. Furthermore, the Cu/MWCNTs release copper ions, which inhibit the quorum sensing in Methylobacterium spp., thereby inhibiting the expression of the genes that form biofilms. Additionally, we confirmed excellent electrical and thermal conductivity of Cu/MWCNTs as well as biofilm removal efficiency in the microfluidic channel.
Collapse
Affiliation(s)
- Youngmin Seo
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Arpa Ç, Aridaşir I. A Method to Determination of Lead Ions in Aqueous Samples: Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction Method Based on Solidification of Floating Organic Drop and Back-Extraction Followed by FAAS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:8951028. [PMID: 30155342 PMCID: PMC6093068 DOI: 10.1155/2018/8951028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Ultrasound-assisted dispersive liquid-liquid microextraction method based on solidification of floating organic drop and back-extraction (UA-DLLME-SFO-BE) technique was proposed for preconcentration of lead ions. In this technique, two SFODME steps are applied in sequence. The classical SFODME was applied as the first step and then the second (back-extraction) step was applied. For the classical SFODME, Pb ions were complexed with Congo red at pH 10.0 and then extracted into 1-dodecanol. After this stage, a second extraction step was performed instead of direct determination of the analyte ion in the classical method. For this purpose, the organic phase containing the extracted analyte ions is treated with 1.0 mol·L-1 HNO3 solution and then exposed to ultrasonication. So, the analyte ions were back-extracted into the aqueous phase. Finally, the analyte ions in the aqueous phase were determined by FAAS directly. Owing to the second extraction step, a clogging problem caused by 1-dodecanol during FAAS determination was avoided. Some parameters which affect the extraction efficiency such as pH, volume of extraction solvent, concentration of complexing agent, type, volume, and concentration of back-extraction solvent, effect of cationic surfactant addition, effect of temperature, and so on were examined. Performed experiments showed that optimum pH was 10.0, 1-dodecanol extraction solvent volume was 75 μL, back-extraction solvent was 500 μL, 1.0 mol·L-1 HNO3, extraction time was 4 min, and extraction temperature was 40°C. Under optimum conditions, the enhancement factor, limit of detection, limit of quantification, and relative standard deviation were calculated as 81, 1.9 μg·L-1, 6.4 μg·L-1, and 3.4% (for 25 μg·L-1 Pb2+), respectively.
Collapse
Affiliation(s)
- Çiğdem Arpa
- Chemistry Department, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| | - Itır Aridaşir
- Chemistry Department, Hacettepe University, Beytepe, 06800 Ankara, Turkey
| |
Collapse
|
48
|
Fast Removal of Sr(II) From Water by Graphene Oxide and Chitosan Modified Graphene Oxide. J Inorg Organomet Polym Mater 2018. [DOI: 10.1007/s10904-018-0885-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Method for the determination of Pb, Cd, Zn, Mn and Fe in rice samples using carbon nanotubes and cationic complexes of batophenanthroline. Food Chem 2018; 249:38-44. [DOI: 10.1016/j.foodchem.2017.12.082] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 11/14/2017] [Accepted: 12/26/2017] [Indexed: 11/17/2022]
|
50
|
Spectrophotometric determination of bismuth after solid-phase extraction using amberlite XAD-2 resin modified with 5-(2′-bromophenylazo)-6-hydroxy pyrimidine-2,4-dione. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2015.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|