1
|
Marmiroli M, Mussi F, Gallo V, Gianoncelli A, Hartley W, Marmiroli N. Combination of Biochemical, Molecular, and Synchrotron-Radiation-Based Techniques to Study the Effects of Silicon in Tomato ( Solanum Lycopersicum L.). Int J Mol Sci 2022; 23:15837. [PMID: 36555489 PMCID: PMC9785873 DOI: 10.3390/ijms232415837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
The work focused on the analysis of two cultivars of tomato (Solanum lycopersicum L.), Aragon and Gladis, under two different treatments of silicon, Low, 2 L of 0.1 mM CaSiO3, and High, 0.5 mM CaSiO3, weekly, for 8 weeks, under stress-free conditions. We subsequently analyzed the morphology, chemical composition, and elemental distribution using synchrotron-based µ-XRF techniques, physiological, and molecular aspects of the response of the two cultivars. The scope of the study was to highlight any significant response of the plants to the Si treatments, in comparison with any response to Si of plants under stress. The results demonstrated that the response was mainly cultivar-dependent, also at the level of mitochondrial-dependent oxidative stress, and that it did not differ from the two conditions of treatments. With Si deposited mainly in the cell walls of the cells of fruits, leaves, and roots, the treatments did not elicit many significant changes from the point of view of the total elemental content, the physiological parameters that measured the oxidative stress, and the transcriptomic analyses focalized on genes related to the response to Si. We observed a priming effect of the treatment on the most responsive cultivar, Aragon, in respect to future stress, while in Gladis the Si treatment did not significantly change the measured parameters.
Collapse
Affiliation(s)
- Marta Marmiroli
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 33/A, 43124 Parma, Italy
- The Italian National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze 93/A, 43124 Parma, Italy
| | - Francesca Mussi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 33/A, 43124 Parma, Italy
| | - Valentina Gallo
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 33/A, 43124 Parma, Italy
| | - Alessandra Gianoncelli
- Elettra-Sincrotrone Trieste, Strada Statale 14—km 163.5 in AREA Science Park, Basovizza, 34149 Trieste, Italy
| | - William Hartley
- Agriculture and Environment, Harper Adams University, Newport B5062, UK
| | - Nelson Marmiroli
- The Italian National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze 93/A, 43124 Parma, Italy
| |
Collapse
|
2
|
Sagonda T, Adil MF, Sehar S, Rasheed A, Joan HI, Ouyang Y, Shamsi IH. Physio-ultrastructural footprints and iTRAQ-based proteomic approach unravel the role of Piriformospora indica-colonization in counteracting cadmium toxicity in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112390. [PMID: 34098428 DOI: 10.1016/j.ecoenv.2021.112390] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/23/2021] [Accepted: 05/28/2021] [Indexed: 05/25/2023]
Abstract
Due to its immense capability to concentrate in rice grain and ultimately in food chain, cadmium (Cd) has become the cause of an elevated concern among agriculturists, scientists and the environmental activists. Symbiotic association of Piriformospora indica (P. indica) has been characterized as a potential aid in combating heavy metal stress in plants for sustainable crop production but our scant knowledge regarding ameliorative tendency of P. indica against Cd, specifically in rice, necessitates an in-depth investigation. This study aimed at elaborating the underlying mechanisms involved in P. indica-mediated tolerance against Cd stress in two rice genotypes, IR8 and ZX1H, varying in Cd accumulation pattern. Either colonized or un-inoculated with P. indica, seedlings of both genotypes were subjected to Cd stress. The results showed that P. indica colonization significantly supported plant biomass, photosynthetic attributes and chlorophyll contents in Cd stressed plants. P. indica colonization sustained chloroplast integrity and reduced Cd translocation (46% and 64%), significantly lowering malondialdehyde (MDA) content (11.3% and 50.4%) compared to uninoculated roots under Cd stress in IR8 and ZX1H, respectively. A genotypic difference was evident when a 2-fold enhancement in root peroxidase (POD) activity was recorded in P. indica colonized IR8 plants as compared to ZX1H. The root proteomic analysis was performed using isobaric tags for relative and absolute quantification (iTRAQ) and the results showed that P. indica alleviates Cd stress in rice via down-regulation of key glycolysis cycle enzymes in a bid to reduce energy consumption by the plants and possibly re-directing it to Cd defense response pathways; and up-regulation of glutamine synthetase, a key enzyme in the L-Arg-dependent pathway for nitric oxide (NO) production, which acts as a stress signaling molecule, thus conferring tolerance by reduction of NO-mediated modification of essential proteins in response to Cd stress. Conclusively, both the tested genotypes benefited from P. indica symbiosis at varying levels by an enhanced detoxification capacity and signaling efficiency in response to stress. Hence, a step forward towards the employment of an environmentally sound and self-renewing approach holding the hope for a healthy future.
Collapse
Affiliation(s)
- Tichaona Sagonda
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Muhammad Faheem Adil
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shafaque Sehar
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Adeela Rasheed
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Heren Issaka Joan
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Younan Ouyang
- China National Rice Research Institute (CNRRI), Fuyang 311400, PR China
| | - Imran Haider Shamsi
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
3
|
Yang GL, Zheng MM, Tan AJ, Liu YT, Feng D, Lv SM. Research on the Mechanisms of Plant Enrichment and Detoxification of Cadmium. BIOLOGY 2021; 10:biology10060544. [PMID: 34204395 PMCID: PMC8234526 DOI: 10.3390/biology10060544] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
The heavy metal cadmium (Cd), as one of the major environmentally toxic pollutants, has serious impacts on the growth, development, and physiological functions of plants and animals, leading to deterioration of environmental quality and threats to human health. Research on how plants absorb and transport Cd, as well as its enrichment and detoxification mechanisms, is of great significance to the development of phytoremediation technologies for ecological and environmental management. This article summarises the research progress on the enrichment of heavy metal cadmium in plants in recent years, including the uptake, transport, and accumulation of Cd in plants. The role of plant roots, compartmentalisation, chelation, antioxidation, stress, and osmotic adjustment in the process of plant Cd enrichment are discussed. Finally, problems are proposed to provide a more comprehensive theoretical basis for the further application of phytoremediation technology in the field of heavy metal pollution.
Collapse
Affiliation(s)
- Gui-Li Yang
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Meng-Meng Zheng
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Ai-Juan Tan
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Yu-Ting Liu
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Dan Feng
- College of Life Sciences, Guizhou University, Guiyang 550025, China; (G.-L.Y.); (M.-M.Z.); (A.-J.T.); (Y.-T.L.); (D.F.)
| | - Shi-Ming Lv
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Correspondence: ; Tel.: +86-1376-513-6919
| |
Collapse
|
4
|
Zou R, Wang L, Li YC, Tong Z, Huo W, Chi K, Fan H. Cadmium absorption and translocation of amaranth (Amaranthus mangostanus L.) affected by iron deficiency. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113410. [PMID: 31679873 DOI: 10.1016/j.envpol.2019.113410] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 05/27/2023]
Abstract
Amaranth (Amaranthus mangostanus L.) has superior capability for accumulating cadmium (Cd) and has the potential to be used for phytoremediation of Cd contaminated soils. Iron (Fe) is chemically similar to Cd and may mediate Cd-induced physiological or metabolic impacts in plants. The purpose was to investigate the model of time-dependent and concentration-dependent kinetics of Cd absorption under Fe deficiency, understanding the physiological mechanism of Cd absorption in amaranth roots. The kinetic characteristics of Cd uptake by amaranth grown in Cd enriched nutritional solution with or without Fe addition and with methanol-chloroform, carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and lanthanum chloride (LaCl3) were compared using 109Cd2+ isotope labeling technique. The results showed that Cd uptake was time-dependent and about 90-93% of uptake occurred during the first 150 min. The kinetics of Cd uptake showed that two stages were involved. The saturation stage fitted the Michaelis-Menten model when concentrations of Cd were lower than 12.71 μmol/L and then the absorption of Cd by roots was increased linearly during the second stage. Only linear absorption was observed with methanol-chloroform treatment while the metabolic inhibitor CCCP inhibited only the saturation absorption process, and the Ca channel inhibitor LaCl3 partially inhibited the two stages of absorption. These results indicated that the root absorption of 109Cd2+ was enhanced under Fe deficiency which induced more Fe transporters in the root cell membrane, and the Ca channel, apoplastic and symplastic pathways enhanced the Cd absorption in roots.
Collapse
Affiliation(s)
- Rong Zou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, China
| | - Li Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, China
| | - Yuncong C Li
- Department of Soil and Water Sciences, Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA
| | - Zhaohui Tong
- Department of Agricultural and Biological Engineering, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - Wenmin Huo
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, China; School of Land Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Keyu Chi
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, China; Beijing Construction Engineering Group Environmental Remediation Co., Ltd. Beijing 100015, China
| | - Hongli Fan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081, China; Department of Soil and Water Sciences, Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA; Department of Agricultural and Biological Engineering, IFAS, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
5
|
Huang B, Dai H, Zhou W, Peng L, Li M, Wan R, He W. Characteristics of Cd accumulation and distribution in two sweet potato cultivars. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:391-398. [PMID: 30656972 DOI: 10.1080/15226514.2018.1524846] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we compared the chemical forms and subcellular distribution of Cd in high-Cd (X16) and low-Cd (N88) sweet potato cultivars through hydroponic experiments and examined the Cd distribution in their roots by histochemical staining. The results showed that inorganic and pectate/protein-integrated Cd predominated in the leaves, and Cd concentrations were significantly higher in X16 than in N88. However, in the roots, Cd was mostly integrated with pectate and protein, and Cd concentration was higher in N88 than in X16. It was mainly stored through vacuolar sequestration and cell wall binding. In the leaves and stems, Cd concentrations in all subcellular fractions were higher in X16 than in N88; the opposite was observed in the roots. In X16, Cd was mostly accumulated in the root stele, and its Cd translocation factor was higher than that of N88. Overall, the subcellular fractions of X16 roots retained less Cd than N88 roots, and more Cd entered the root stele of X16 and subsequently moved to the shoots. The higher amounts of inorganic, water-soluble, and pectate/protein-integrated Cd with high mobility in the shoots of X16 than in N88 might facilitate Cd remobilization to other tissues, but this needs to be further studied.
Collapse
Affiliation(s)
- Baifei Huang
- a Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering , Hunan Institute of Technology , Hengyang , China
| | - Hongwen Dai
- a Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering , Hunan Institute of Technology , Hengyang , China
| | - Wenjing Zhou
- a Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering , Hunan Institute of Technology , Hengyang , China
| | - Lijing Peng
- a Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering , Hunan Institute of Technology , Hengyang , China
| | - Meizhen Li
- a Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering , Hunan Institute of Technology , Hengyang , China
| | - Renjie Wan
- a Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering , Hunan Institute of Technology , Hengyang , China
| | - Wenting He
- a Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering , Hunan Institute of Technology , Hengyang , China
| |
Collapse
|
6
|
Vatehová-Vivodová Z, Kollárová K, Malovíková A, Lišková D. Maize shoot cell walls under cadmium stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22318-22322. [PMID: 29974437 DOI: 10.1007/s11356-018-2602-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
The composition of shoot cell walls of two maize hybrids (Zea mays L.), the sensitive Novania and the tolerant Almansa, both after cadmium treatment was studied. Previous results showed a smaller effect of cadmium on shoot physiological parameters (e.g., elongation, dry mass, photosynthetic pigments content) in both hybrids compared to their roots. Changes in the composition of shoot cell walls were observed. It was ascertained that the amount of hemicelluloses in shoot cell walls decreased and the amount of lignocellulose complex increased in the sensitive hybrid; the opposite was observed in the tolerant Almansa. Dissimilarities in the cell wall structure of shoots, compared to the roots, in both hybrids were observed mainly in higher quantities of total lignin, in hemicelluloses fractions. The lignocellulose complex remained unchanged in the shoots in comparison to the roots. Nevertheless, in both hybrids, the highest Cd2+ amount was found in hemicelluloses. Such modification of the cell walls might affect the amount of binding sites resulting in lower cell wall permeability and subsequently in a lower pollutant influx into the protoplast.
Collapse
Affiliation(s)
- Zuzana Vatehová-Vivodová
- Institute of Chemistry, Centre of Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| | - Karin Kollárová
- Institute of Chemistry, Centre of Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Anna Malovíková
- Institute of Chemistry, Centre of Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Desana Lišková
- Institute of Chemistry, Centre of Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| |
Collapse
|
7
|
Rizwan M, Ali S, Qayyum MF, Ok YS, Zia-Ur-Rehman M, Abbas Z, Hannan F. Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2017; 39:259-277. [PMID: 27061410 DOI: 10.1007/s10653-016-9826-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/31/2016] [Indexed: 05/20/2023]
Abstract
Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Muhammad Farooq Qayyum
- Department of Soil Sciences, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Yong Sik Ok
- Korea Biochar Research Center and Department of Biological Environment, Kangwon National University, Chuncheon, 200-701, Korea
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zaheer Abbas
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Fakhir Hannan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| |
Collapse
|
8
|
Balestri M, Ceccarini A, Forino LMC, Zelko I, Martinka M, Lux A, Ruffini Castiglione M. Cadmium uptake, localization and stress-induced morphogenic response in the fern Pteris vittata. PLANTA 2014; 239:1055-64. [PMID: 24519545 DOI: 10.1007/s00425-014-2036-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/21/2014] [Indexed: 05/08/2023]
Abstract
Cadmium uptake, tissue localization and structural changes induced at cellular level are essential to understand Cd tolerance in plants. In this study we have exposed plants of Pteris vittata to different concentrations of CdCl2 (0, 30, 60, 100 μM) to evaluate the tolerance of the fern to cadmium. Cadmium content determination and its histochemical localization showed that P. vittata not only takes up, but also transports and accumulates cadmium in the aboveground tissues, delocalizing it mainly in the less bioactive tissues of the frond, the trichomes and the scales. Cadmium tolerance in P. vittata was strictly related to morphogenic response induced by the metal itself in the root system. Adaptive response regarded changes of the root apex size, the developmental pattern of root hairs, the differentiation of xylem elements and endodermal suberin lamellae. All the considered parameters suggest that, in our experimental conditions, 60 μM of Cd may represent the highest concentration that P. vittata can tolerate; indeed this Cd level even improves the absorbance features of the root and allows good transport and accumulation of the metal in the fronds. The results of this study can provide useful information for phytoremediation strategies of soils contaminated by Cd, exploiting the established ability of P. vittata to transport, delocalize in the aboveground biomass and accumulate polluting metals.
Collapse
Affiliation(s)
- Mirko Balestri
- Department of Biology, University of Pisa, via L. Ghini 13, 56126, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Lemoine R, Camera SL, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M. Source-to-sink transport of sugar and regulation by environmental factors. FRONTIERS IN PLANT SCIENCE 2013; 4:272. [PMID: 23898339 PMCID: PMC3721551 DOI: 10.3389/fpls.2013.00272] [Citation(s) in RCA: 539] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 07/02/2013] [Indexed: 05/18/2023]
Abstract
Source-to-sink transport of sugar is one of the major determinants of plant growth and relies on the efficient and controlled distribution of sucrose (and some other sugars such as raffinose and polyols) across plant organs through the phloem. However, sugar transport through the phloem can be affected by many environmental factors that alter source/sink relationships. In this paper, we summarize current knowledge about the phloem transport mechanisms and review the effects of several abiotic (water and salt stress, mineral deficiency, CO2, light, temperature, air, and soil pollutants) and biotic (mutualistic and pathogenic microbes, viruses, aphids, and parasitic plants) factors. Concerning abiotic constraints, alteration of the distribution of sugar among sinks is often reported, with some sinks as roots favored in case of mineral deficiency. Many of these constraints impair the transport function of the phloem but the exact mechanisms are far from being completely known. Phloem integrity can be disrupted (e.g., by callose deposition) and under certain conditions, phloem transport is affected, earlier than photosynthesis. Photosynthesis inhibition could result from the increase in sugar concentration due to phloem transport decrease. Biotic interactions (aphids, fungi, viruses…) also affect crop plant productivity. Recent breakthroughs have identified some of the sugar transporters involved in these interactions on the host and pathogen sides. The different data are discussed in relation to the phloem transport pathways. When possible, the link with current knowledge on the pathways at the molecular level will be highlighted.
Collapse
Affiliation(s)
- Remi Lemoine
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Sylvain La Camera
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Rossitza Atanassova
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Fabienne Dédaldéchamp
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Thierry Allario
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Nathalie Pourtau
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Jean-Louis Bonnemain
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Maryse Laloi
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Pierre Coutos-Thévenot
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Laurence Maurousset
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Mireille Faucher
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Christine Girousse
- Diversité et Ecophysiologie des Céréales, Unités Mixtes de RechercheClermont Ferrand, France
| | - Pauline Lemonnier
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Jonathan Parrilla
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| | - Mickael Durand
- Unités Mixtes de Recherche, Ecologie et Biologie des Interactions, Université of Poitiers/Centre National de la Recherche ScientifiquePoitiers, France
| |
Collapse
|
10
|
Leguminous plants nodulated by selected strains of Cupriavidus necator grow in heavy metal contaminated soils amended with calcium silicate. World J Microbiol Biotechnol 2013; 29:2055-66. [PMID: 23670312 DOI: 10.1007/s11274-013-1369-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
Abstract
Increasing concern regarding mining area environmental contamination with heavy metals has resulted in an emphasis of current research on phytoremediation. The aim of the present study was to assess the efficiency of symbiotic Cupriavidus necator strains on different leguminous plants in soil contaminated with heavy metals following the application of inorganic materials. The application of limestone and calcium silicate induced a significant increase in soil pH, with reductions in zinc and cadmium availability of 99 and 94 %, respectively. In addition, improved nodulation of Mimosa caesalpiniaefolia, Leucaena leucocephala and Mimosa pudica in soil with different levels of contamination was observed. Significant increases in the nitrogen content of the aerial parts of the plant were observed upon nodulation of the root system of Leucaena leucocephala and Mimosa pudica by strain UFLA01-659 (36 and 40 g kg(-1)) and by strain UFLA02-71 in Mimosa caesalpiniaefolia (39 g kg(-1)). The alleviating effect of calcium silicate resulted in higher production of dry matter from the aerial part of the plant, an increase in nodule number and an increase in the nitrogen fixation rate. The results of the present study demonstrate that the combination of rhizobia, leguminous plants and calcium silicate may represent a key factor in the remediation of areas contaminated by heavy metals.
Collapse
|
11
|
He J, Li H, Luo J, Ma C, Li S, Qu L, Gai Y, Jiang X, Janz D, Polle A, Tyree M, Luo ZB. A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus x canescens. PLANT PHYSIOLOGY 2013; 162:424-39. [PMID: 23530184 PMCID: PMC3641221 DOI: 10.1104/pp.113.215681] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/22/2013] [Indexed: 05/18/2023]
Abstract
Bark tissue of Populus × canescens can hyperaccumulate cadmium, but microstructural, transcriptomic, and physiological response mechanisms are poorly understood. Histochemical assays, transmission electron microscopic observations, energy-dispersive x-ray microanalysis, and transcriptomic and physiological analyses have been performed to enhance our understanding of cadmium accumulation and detoxification in P. × canescens. Cadmium was allocated to the phloem of the bark, and subcellular cadmium compartmentalization occurred mainly in vacuoles of phloem cells. Transcripts involved in microstructural alteration, changes in nutrition and primary metabolism, and stimulation of stress responses showed significantly differential expression in the bark of P. × canescens exposed to cadmium. About 48% of the differentially regulated transcripts formed a coregulation network in which 43 hub genes played a central role both in cross talk among distinct biological processes and in coordinating the transcriptomic regulation in the bark of P. × canescens in response to cadmium. The cadmium transcriptome in the bark of P. × canescens was mirrored by physiological readouts. Cadmium accumulation led to decreased total nitrogen, phosphorus, and calcium and increased sulfur in the bark. Cadmium inhibited photosynthesis, resulting in decreased carbohydrate levels. Cadmium induced oxidative stress and antioxidants, including free proline, soluble phenolics, ascorbate, and thiol compounds. These results suggest that orchestrated microstructural, transcriptomic, and physiological regulation may sustain cadmium hyperaccumulation in P. × canescens bark and provide new insights into engineering woody plants for phytoremediation.
Collapse
Affiliation(s)
| | | | - Jie Luo
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas (J.H., J.L., C.M., S.L., Z.-B.L.), Key Laboratory of Applied Entomology, College of Plant Protection (H.L.), and Key Laboratory of Environment and Ecology in Western China, Ministry of Education, College of Forestry (M.T., Z.-B.L.), Northwest A&F University, Yangling, Shaanxi 712100, China
- National Engineering Laboratory of Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (L.Q., Y.G., X.J.); and
- Büsgen Institute, Department of Forest Botany and Tree Physiology, Georg-August University, 37077 Göttingen, Germany (D.J., A.P.)
| | - Chaofeng Ma
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas (J.H., J.L., C.M., S.L., Z.-B.L.), Key Laboratory of Applied Entomology, College of Plant Protection (H.L.), and Key Laboratory of Environment and Ecology in Western China, Ministry of Education, College of Forestry (M.T., Z.-B.L.), Northwest A&F University, Yangling, Shaanxi 712100, China
- National Engineering Laboratory of Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (L.Q., Y.G., X.J.); and
- Büsgen Institute, Department of Forest Botany and Tree Physiology, Georg-August University, 37077 Göttingen, Germany (D.J., A.P.)
| | - Shaojun Li
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas (J.H., J.L., C.M., S.L., Z.-B.L.), Key Laboratory of Applied Entomology, College of Plant Protection (H.L.), and Key Laboratory of Environment and Ecology in Western China, Ministry of Education, College of Forestry (M.T., Z.-B.L.), Northwest A&F University, Yangling, Shaanxi 712100, China
- National Engineering Laboratory of Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (L.Q., Y.G., X.J.); and
- Büsgen Institute, Department of Forest Botany and Tree Physiology, Georg-August University, 37077 Göttingen, Germany (D.J., A.P.)
| | - Long Qu
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas (J.H., J.L., C.M., S.L., Z.-B.L.), Key Laboratory of Applied Entomology, College of Plant Protection (H.L.), and Key Laboratory of Environment and Ecology in Western China, Ministry of Education, College of Forestry (M.T., Z.-B.L.), Northwest A&F University, Yangling, Shaanxi 712100, China
- National Engineering Laboratory of Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (L.Q., Y.G., X.J.); and
- Büsgen Institute, Department of Forest Botany and Tree Physiology, Georg-August University, 37077 Göttingen, Germany (D.J., A.P.)
| | - Ying Gai
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas (J.H., J.L., C.M., S.L., Z.-B.L.), Key Laboratory of Applied Entomology, College of Plant Protection (H.L.), and Key Laboratory of Environment and Ecology in Western China, Ministry of Education, College of Forestry (M.T., Z.-B.L.), Northwest A&F University, Yangling, Shaanxi 712100, China
- National Engineering Laboratory of Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (L.Q., Y.G., X.J.); and
- Büsgen Institute, Department of Forest Botany and Tree Physiology, Georg-August University, 37077 Göttingen, Germany (D.J., A.P.)
| | - Xiangning Jiang
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas (J.H., J.L., C.M., S.L., Z.-B.L.), Key Laboratory of Applied Entomology, College of Plant Protection (H.L.), and Key Laboratory of Environment and Ecology in Western China, Ministry of Education, College of Forestry (M.T., Z.-B.L.), Northwest A&F University, Yangling, Shaanxi 712100, China
- National Engineering Laboratory of Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (L.Q., Y.G., X.J.); and
- Büsgen Institute, Department of Forest Botany and Tree Physiology, Georg-August University, 37077 Göttingen, Germany (D.J., A.P.)
| | - Dennis Janz
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas (J.H., J.L., C.M., S.L., Z.-B.L.), Key Laboratory of Applied Entomology, College of Plant Protection (H.L.), and Key Laboratory of Environment and Ecology in Western China, Ministry of Education, College of Forestry (M.T., Z.-B.L.), Northwest A&F University, Yangling, Shaanxi 712100, China
- National Engineering Laboratory of Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (L.Q., Y.G., X.J.); and
- Büsgen Institute, Department of Forest Botany and Tree Physiology, Georg-August University, 37077 Göttingen, Germany (D.J., A.P.)
| | - Andrea Polle
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas (J.H., J.L., C.M., S.L., Z.-B.L.), Key Laboratory of Applied Entomology, College of Plant Protection (H.L.), and Key Laboratory of Environment and Ecology in Western China, Ministry of Education, College of Forestry (M.T., Z.-B.L.), Northwest A&F University, Yangling, Shaanxi 712100, China
- National Engineering Laboratory of Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (L.Q., Y.G., X.J.); and
- Büsgen Institute, Department of Forest Botany and Tree Physiology, Georg-August University, 37077 Göttingen, Germany (D.J., A.P.)
| | - Melvin Tyree
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas (J.H., J.L., C.M., S.L., Z.-B.L.), Key Laboratory of Applied Entomology, College of Plant Protection (H.L.), and Key Laboratory of Environment and Ecology in Western China, Ministry of Education, College of Forestry (M.T., Z.-B.L.), Northwest A&F University, Yangling, Shaanxi 712100, China
- National Engineering Laboratory of Tree Breeding, College of Life Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China (L.Q., Y.G., X.J.); and
- Büsgen Institute, Department of Forest Botany and Tree Physiology, Georg-August University, 37077 Göttingen, Germany (D.J., A.P.)
| | | |
Collapse
|
12
|
Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Gwóźdź EA. The message of nitric oxide in cadmium challenged plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:612-20. [PMID: 21893258 DOI: 10.1016/j.plantsci.2011.03.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/22/2011] [Accepted: 03/28/2011] [Indexed: 05/21/2023]
Abstract
During the last decade it has been found that cadmium (Cd), one of the most toxic elements occurring in polluted environments, interferes with nitric oxide (NO), a multifunctional signaling molecule in living organisms. The formation of NO has been demonstrated in vivo in various plant tissues exposed to Cd stress, but unfortunately, the time and intensity of NO generation, relatively frequently shows conflicting data. What is more, there is still limited information regarding the functional role of endogenously produced NO in plants challenged with heavy metals. The first pharmacological approaches revealed that exogenously applied NO can alleviate cadmium toxicity in plants, promoting the direct scavenging of reactive oxygen species (ROS) or activating antioxidant enzymes. However, recent reports have indicated that NO even contributes to Cd toxicity by promoting Cd uptake and participates in metal-induced reduction of root growth. In view of this heterogeneous knowledge, much more puzzling if we consider results first obtained using exogenous NO sources, this review is focused mainly on the implication of endogenous NO in plant response to Cd exposure. Furthermore, a basic draft for NO mode of action during cadmium stress is proposed.
Collapse
Affiliation(s)
- Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | | | | |
Collapse
|
13
|
Bouazizi H, Jouili H, Geitmann A, El Ferjani E. Cell wall accumulation of cu ions and modulation of lignifying enzymes in primary leaves of bean seedlings exposed to excess copper. Biol Trace Elem Res 2011; 139:97-107. [PMID: 20204549 DOI: 10.1007/s12011-010-8642-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
Copper is both a nutrient and an environmental toxin that is taken up by plants. In order to determine the subcellular localization of copper and to assess the resulting metabolic changes, we exposed 14-day-old bean seedlings to nutrient solutions containing varying concentrations of Cu(2+) ions for 3 days. Biochemical analyses revealed that the cell wall was the major site of Cu(2+) accumulation in the leaves of treated plants. Excess copper modified the activity of lignifying peroxidases in both soluble and ionic cell wall-bound fraction. The activity of ionic GPX (guaiacol peroxidase, EC 1.11.1.7) was increased by 50 and 75 µM CuSO₄. The activities of both ionic CAPX (coniferyl alcohol peroxidase, EC 1.11.1.4) and NADH oxidase were increased by both copper concentrations tested. While soluble CAPX activity decreased in leaves treated by all copper concentrations tested, the activity of soluble NADH oxidase remained unchanged at 50 µM and was enhanced at 75 µM. Treatment with CuSO₄ also increased the abundance of total phenol compounds and induced stimulation in the activity of PAL (phenylalanine ammonia lyase, EC. 4.3.1.5). Using histochemistry in combination with fluorescence microscopy we show that bean leaves from copper-exposed plants displayed biochemical and structural modifications reinforcing the cell walls of their xylem tissues. On the other hand, the perivascular fiber sclerenchyma appeared to be less developed in treated leaves.
Collapse
Affiliation(s)
- Houda Bouazizi
- Faculté des Sciences de Bizerte, Laboratoire de Bio-Physiologie Cellulaires, 7021 Zarzouna, Tunisie
| | | | | | | |
Collapse
|
14
|
Kieffer P, Planchon S, Oufir M, Ziebel J, Dommes J, Hoffmann L, Hausman JF, Renaut J. Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves. J Proteome Res 2009; 8:400-17. [PMID: 19072159 DOI: 10.1021/pr800561r] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A proteomic analysis of poplar leaves exposed to cadmium, combined with biochemical analysis of pigments and carbohydrates revealed changes in primary carbon metabolism. Proteomic results suggested that photosynthesis was slightly affected. Together with a growth inhibition, photoassimilates were less needed for developmental processes and could be stored in the form of hexoses or complex sugars, acting also as osmoprotectants. Simultaneously, mitochondrial respiration was upregulated, providing energy needs of cadmium-exposed plants.
Collapse
Affiliation(s)
- Pol Kieffer
- Centre de Recherche Public-Gabriel Lippmann, L-4422 Belvaux, Luxembourg, Belgium
| | | | | | | | | | | | | | | |
Collapse
|